

# **APPENDIX B**



| \                       |            |             |                         |
|-------------------------|------------|-------------|-------------------------|
|                         |            |             |                         |
|                         |            |             |                         |
|                         |            | \           |                         |
|                         | ÷ [        | Ĺ           |                         |
|                         |            |             | Shippee Hall Refer to A |
|                         |            |             |                         |
| FOREBAY 1               |            |             |                         |
|                         | · ·        |             |                         |
| NEW BY-PAS              | s th       |             | ALLOW                   |
| STRUCTURES<br>HYDRODYNA | AND<br>MIC |             | HELX                    |
| SEPARATORS              |            |             |                         |
|                         |            | NOTE: DOCUI | MENT SHOULD BE          |
|                         |            | CONSIDERED  |                         |
| Y                       |            |             |                         |
|                         |            | N/A         | DRAWING NUMBER          |
| JJB                     | REFERENCE  | DRAWING     | JIRIVI-I                |





# **APPENDIX C**



Known for excellence. Built on trust. Mirror Lake Dam Improvements- Conceptual Design Report

# MIRROR LAKE DAM IMPROVEMENTS PROJECT CT DAM ID #7806 Storrs, Connecticut

April 20, 2021 GZA File No. 05.0046161.07



**PREPARED FOR:** BVH Integrated Services, P.C. 206 West New Berry Road Bloomfield, CT 06002

# GZA GeoEnvironmental, Inc.

95 Glastonbury Boulevard, 3<sup>rd</sup> Floor | Glastonbury, CT 06033 860-286-8900

30 Offices Nationwide www.gza.com

Copyright© 2021 GZA GeoEnvironmental, Inc.



Known for excellence. Built on trust.

GEOTECHNICAL ENVIRONMENTAL ECOLOGICAL WATER CONSTRUCTION MANAGEMENT

35 Nutmeg Drive Suite 325 Trumbull, CT 06611 T: 203.380.8188 F: 203.375.1529 www.gza.com



Via Email

April 20, 2021 File No. 05.0046161.07

Mr. Scott Waitkus, P.E. Vice President BVH Integrated Services, P.C. 206 West Newberry Road Bloomfield, CT 06002

Re: Mirror Lake Dam Improvements- Conceptual Design Report Mirror Lake Dam (CT DAM ID #7806) University of Connecticut Storrs Campus

Dear Mr. Waitkus,

GZA GeoEnvironmental, Inc. (GZA) is pleased to present this report detailing our subsurface investigations and engineering analyses in support of the Mirror Lake Dam Improvements Project to BVH Integrated Services (BVH). This report was prepared in accordance with our proposal dated November 10, 2020 and executed on December 8, 2020. This report is subject to the Limitations attached as **Appendix A**.

GZA's scope of services was to provide feasibility-level dam safety engineering and dredge services to support the proposed Mirror Lake Dam and Lake improvements. GZA completed a field exploration program, hydrologic and hydraulic (H&H) analysis, and geotechnical engineering analyses in support of the proposed improvements. This report provides a summary of the following:

- Project background;
- Geotechnical explorations;
- Geotechnical laboratory testing;
- H&H analysis results;
- Embankment seepage and slope stability analyses results;
- Spillway stability analysis results;
- Anticipated required permits; and
- Conceptual-level repair plans and brief technical specifications.

The results of the dredge feasibility study and limnological study were provided under separate covers.



We appreciate the opportunity to work with you on this project and look forward to our continued collaboration. Please contact James Davis, P.E. (860-462-3016) or David M. Barstow (860-250-2131) if you have any questions or require additional information.

Very truly yours,

GZA GEOENVIRONMENTAL, INC.

Ja Zze

James F. Davis, P.E. Sr. Project Manager

David M. Leone, PE Consultant/Reviewer

David M. Barstow, P.E. Principal-In-Charge



| TABLE | OF CON | TENTS                                                                 |      |
|-------|--------|-----------------------------------------------------------------------|------|
| 1.0   | INTRO  | DUCTION                                                               | 1    |
|       | 1.1    | SITE DESCRIPTION                                                      | 1    |
|       | 1.2    | PROJECT BACKGROUND                                                    | 2    |
|       | 1.3    | PROJECT APPROACH                                                      | 2    |
| 2.0   | SUBSU  | IRFACE EXPLORATION PROGRAM                                            | 3    |
|       | 2.1    | HISTORIC TEST BORINGS                                                 | 3    |
|       | 2.2    | GZA TEST BORINGS                                                      | 3    |
|       | 2.3    | LABORATORY TESTING                                                    | 4    |
| 3.0   | SUBSU  | IRFACE CONDITIONS                                                     | 4    |
| 4.0   | HYDRC  | DLOGIC AND HYDRAULIC ANALYSIS                                         | 5    |
|       | 4.1    | HYDROLOGIC ANALYSIS                                                   | 6    |
|       | 4.2    | HYDRAULIC ANALYSIS                                                    | 7    |
|       | 4.3    | DAM BREACH RESULTS                                                    | 8    |
|       | 4.4    | RECOMMENDED SPILLWAY DESIGN FLOOD                                     | . 11 |
| 5.0   | GEOTE  | CHNICAL ANALYSIS                                                      | .12  |
|       | 5.1    | ENGINEERING PROPERTIES                                                | . 12 |
|       | 5.2    | SEISMIC SITE PARAMETERS                                               | . 12 |
|       | 5.3    | LIQUEFACTION ANALYSIS                                                 | .13  |
|       | 5.4    | SEEPAGE ANALYSIS                                                      | .13  |
|       | 5.4.1  | SEEPAGE ANALYSIS RESULTS                                              | .14  |
|       | 5.5    | SLOPE STABILITY ANALYSIS                                              | .14  |
|       | 5.5.1  | SLOPE STABILITY ANALYSIS RESULTS                                      | . 15 |
|       | 5.6    | SPILLWAY GRAVITY ANALYSIS                                             | .16  |
|       | 5.6.1  | GRAVITY ANALYSIS RESULTS                                              | .16  |
| 6.0   | PROPC  | DSED CONDITIONS                                                       | .17  |
|       | 6.1    | ANTICIPATED CONSTRUCTION SEQUENCE                                     | . 18 |
|       | 6.2    | ANTICIPATED PERMIT REQUIREMENTS                                       | . 18 |
| TABL  | ES     |                                                                       |      |
| TABL  | Ξ1     | SUMMARY OF TEST EXPLORATION DATA                                      |      |
| TABLE | 2      | SUMMARY OF GROUNDWATER MEASUREMENTS                                   |      |
| TABLE | = 3    | HEC-HMS SUBWATERSHED INPUTS                                           |      |
| TARIE | = J    | HEC-HMS DAM AND RESERVOIR INPLITS                                     |      |
|       |        |                                                                       |      |
|       |        |                                                                       |      |
|       |        |                                                                       |      |
| TABL  | = /    |                                                                       |      |
| IABLE | - 8    |                                                                       |      |
| TABL  | E 9    | WATER SURFACE ELEVATION RESULTS AT MODELED STRUCTURES, 100-YEAR FLOOD |      |
| TABL  | E 10   | WATER SURFACE ELEVATION RESULTS AT MODELED STRUCTURES, 200-YEAR FLOOD |      |
| TABL  | E 11   | WATER SURFACE ELEVATION RESULTS AT MODELED STRUCTURES, 500-YEAR FLOOD |      |
| TABL  | E 12   | ACOE RECOMMENDED DESIGN STORMS FOR SMALL SIZE EXISTING DAMS           |      |
| TABL  | E 13   | MATERIAL PROPERTIES USED IN GZA'S SEEPAGE AND STABILITY ANALYSES      |      |

 TABLE 14
 SEEPAGE ANALYSIS RESULTS



#### TABLE OF CONTENTS

| TABLE 15 | PROPOSED CONDITIONS- SLOPE STABILITY ANALYSIS RESULTS  |
|----------|--------------------------------------------------------|
| TABLE 16 | PROPOSED CONDITIONS- SPILLWAY GRAVITY ANALYSIS RESULTS |

### FIGURES

FIGURE 1SITE LOCUSFIGURE 2EXPLORATION LOCATION PLAN

#### APPENDICES

| APPENDIX A | LIMITATIONS                                   |
|------------|-----------------------------------------------|
| APPENDIX B | 2004 TEST BORING LOGS                         |
| APPENDIX C | GZA TEST BORING LOGS                          |
| APPENDIX D | LABORATORY TEST RESULTS                       |
| APPENDIX E | BEDROCK CORE PHOTOGRAPHS                      |
| APPENDIX F | SUBWATERSHED MAP                              |
| APPENDIX G | MATERIAL PROPERTIES CALCULATIONS              |
| APPENDIX H | EMBANKMENT SEEPAGE AND STABILITY CALCULATIONS |
| APPENDIX I | GRAVITY ANALYSIS CALCULATIONS                 |
| APPENDIX J | PROPOSED CONDITIONS PLANS                     |
| APPENDIX K | INUNDATION MAP – MIRROR LAKE DAM              |
|            |                                               |



#### 1.0 INTRODUCTION

#### 1.1 <u>SITE DESCRIPTION</u>

Mirror Lake Dam is located on the University of Connecticut (UCONN) Storrs Campus in Storrs, Connecticut. The dam impounds Mirror Lake to the south and is bordered by Storrs Road to the east and north and by academic buildings to the west. The dam can be accessed via a sidewalk that extends between Mansfield Road and Storrs Road. The approximate Dam location is presented on **Figure 1 – Locus Plan**.

Based on available information<sup>1</sup>, Mirror Lake Dam originally consisted of a "wooden dam" that was replaced with an earthen embankment in 1922. The dam was reportedly "reinforced" in 1935 after heavy spring rains caused a leak and the dam was repaired/replaced again in 1946. Drawings and/or engineering calculations of the current dam are not known to exist.

Mirror Lake Dam currently consists of an earthen embankment with a concrete, ogee-shaped spillway. The earthen embankment is about 390-feet long with a top of dam width of about 5 to 8 feet. The embankment has a maximum height of about 11.7 feet. The downstream slope is vegetated and 3 horizontal to 1 vertical (3H:1V) or flatter. The upstream slope is vegetated and ranges from about 1.6H:1V to 2H:1V between the top of dam and the normal water line.

The ogee-shaped spillway has a crest elevation of 584.88 feet and is 12-feet long (i.e., weir length). In 2021, a riprap apron was constructed downstream of the spillway, which replaced a former concrete apron. A concrete pedestrian bridge spans over the spillway at about El. 588 feet. The spillway discharges to Roberts Brook that eventually flows into the Fenton River. A 12-inch diameter, steel sleeved low-level outlet pipe is located to the right of the spillway with an invert of El. 579 feet.

Mirror Lake Dam is currently classified by the Connecticut Department of Energy and Environmental Protection (CTDEEP) as a Hazard Class BB (Moderate Hazard) dam. GZA prepared a "Revised Hydrological Analysis, Dam Break Modeling, and Hazard Classification Analysis" Report, dated December 3, 2019. GZA's 2019 Report included a hypothetical dam breach analysis. Based on the estimated flood limits, Route 195 (Storrs Road) would be overtopped and Mirror Lake Dam has the potential to be classified as a Class C dam in accordance with CT DEEP Dam Safety regulations. The CT DEEP hazard classes with corresponding impacts are summarized below.

| Hazard Class           | Potential Impact of Dam Failure                                                                   |
|------------------------|---------------------------------------------------------------------------------------------------|
| AA (Negligible Hazard) | No measurable damage to roadways, land and structures and negligible economic loss                |
| A (Low Hazard)         | Damage to agricultural land, unpaved local roadways, or minimal economic loss                     |
| BB (Moderate Hazard)   | Damage to normally unoccupied storage structures, paved local roadways, or moderate economic loss |

<sup>&</sup>lt;sup>1</sup> <u>https://today.uconn.edu/2016/10/reflections-mirror-lake/</u>, dated October 14, 2016

| GZN                    | April 20, 2021<br>Mirror Lake Dam Improvements<br>Conceptual Design Report<br>05.0046161.07<br>Page   2                                                                              |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| B (Significate Hazard) | Possible loss of life, minor damage to habitable<br>structures, residences, damage to local utility<br>facilities, collector roadways and railroads, or<br>significant economic loss |
| C (High Hazard)        | Probably loss of life, major damage to habitable structures, residences, damage to major utility facilities, arterial roadways, or great economic loss.                              |

Pertinent dimensions and elevations of the existing dam are summarized below. Elevations in this report reference the North American Vertical Datum of 1988 (NAVD88).

Top of Dam Elevation: Varies from El. 588.0 to 588.6 ft Embankment Length: 378 feet Spillway Crest Elevation: El. 584.88 ft Low-Level Outlet Invert: El. 579 ft Spillway Length: 12 feet

#### 1.2 PROJECT BACKGROUND

GZA has previously completed a regulatory dam inspection and hydrologic and hydraulic analysis of Mirror Lake Dam. The results of GZA's previous assignments were presented in the following:

- "Mirror Lake Dam Visual Inspection Report", October 21, 20216 (GZA 2016);
- "Hydrologic Analysis, Dam Break Modeling, and Hazard Classification Analysis for Mirror Lake Dam", December 3, 2019 (GZA 2019); and
- "Culvert Below Route 195 Analysis, Mirror Lake Dam Breach Analysis", April 28, 2020 (GZA 2020).

The previous assignments identified the following deficiencies at Mirror Lake Dam:

- Inadequate factors of safety against slope stability (Lenard 2010<sup>2</sup>);
- Inadequate factors of safety against sliding for the spillway (Lenard 2010); and
- Inability to pass the 100-year flood with 1-foot of freeboard.

In addition, Mirror Lake has aquatic and aesthetic deficiencies that are likely associated with the relatively shallow water levels and relatively large amount of sediment in the lake.

### 1.3 PROJECT APPROACH

UCONN has requested a feasibility-level study to evaluate improvements to Mirror Lake and Mirror Lake Dam from a stormwater, dam-safety, and aesthetic standpoint. This Report is specific to the dam-safety evaluation and proposed improvements for the dam. GZA's scope of work included the following:

- Subsurface explorations;
- Geotechnical laboratory testing program;

<sup>&</sup>lt;sup>2</sup> "Revised Dam Safety Calculations Mirror Lake Dam, Storrs, Connecticut", Lenard Engineering, Inc., dated February 20, 2010.



- Spillway design flood and spillway capacity analyses; and
- Seepage and stability analyses.

Details and results of the above-mentioned tasks are described in further detail in subsequent sections below.

#### 2.0 SUBSURFACE EXPLORATION PROGRAM

#### 2.1 HISTORIC TEST BORINGS

Four test boring (B-3, B-4, B-6 and B-7) were drilled by Glacier Drilling under the direction of Lenard Engineering, Inc. between May and October 2004. Each of the test borings were completed as a monitoring well. The test borings were drilled with 4-1/4-inch diameter, hollow-stem augers to refusal at depths of 15.8 to 20.0 feet. Coring was performed at B-3 to a final depth of 24 feet. The four test boring locations are presented on the attached **Figure 2- Exploration Location Plan** and the test boring logs are included in **Appendix B**.

#### 2.2 GZA TEST BORINGS

Four test borings (GZ-1, GZ-2, GZ-3, GZ-4) were drilled by Seaboard Drilling of Chicopee, Massachusetts between January 8 and January 14, 2021. Test borings GZ-1 and GZ-3 were performed at the crest of the embankment and test boring GZ-2 and GZ-4 were performed at the embankment toe. As required by CTDEEP Dam Safety, a General Permit was acquired prior to the start of the drilling program. The test borings were advanced to depths of about 25 feet to 33.5 feet with an ATV-mounted drill rig using cased, rotary wash drilling methods. Split-spoon samples were obtained continuously in general accordance with ASTM D1586, the Standard Penetration Test (SPT). The SPT consists of advancing a 1-3/8-inch I.D. split-spoon sampler driven (normally) 24 inches into the ground with a 140 lb. hammer falling 30 inches. The SPT value, referred to as the "N" value, is the number of blows per foot (bpf) of penetration required to drive the sampler from 6 to 18 inches of penetration, and is a commonly used indicator of soil density and consistency. Bedrock was cored in three of the explorations using an NX-sized, double-tube core barrel. Each of the test borings were completed as a groundwater observation well.

The recovered rock cores were described using a modified International Society for Rock Mechanics (ISRM) system. The rock description, rock core recovery value, and Rock Quality Designation (RQD) value were recorded for each rock core run, providing a qualitative understanding of the physical and engineering properties of the rock. The RQD reflects the fracture frequency and spacing within the core run and is calculated by summing the lengths of intact core pieces 4 inches or greater in length and dividing that value by the total length of the core run

The subsurface explorations were monitored and logged by GZA personnel. The soils were classified according to the modified Burmister classification system. The exploration locations were determined in the field using a Geoexplorer 6000 Series GPS. The exploration logs are attached as **Appendix C**. The approximate exploration locations are presented on the attached **Figure 2-Exploration Location Plan**.



#### 2.3 LABORATORY TESTING

Six (6) grain size analysis tests with hydrometers (ASTM D6913) were performed on soil samples to confirm the visual-manual classifications made in the field and assess engineering properties of the encountered soil. The laboratory test results are attached in **Appendix D** and summarized below.

| Test Boring | Sample<br>Depth | Stratum            | % Passing No. 200<br>Sieve |
|-------------|-----------------|--------------------|----------------------------|
| GZ-1        | 2' – 4'         | Embankment<br>Fill | 39.8                       |
| GZ-1        | 12' – 14'       | Glacial Till       | 25.7                       |
| GZ-2        | 4' - 6'         | Fill               | 37.3                       |
| GZ-3        | 6' - 8'         | Embankment<br>Fill | 44.6                       |
| GZ-3        | 14' – 16'       | Glacial Till       | 17.9                       |
| GZ-4        | 6' - 8'         | Glacial Till       | 24.8                       |

#### 3.0 SUBSURFACE CONDITIONS

A generalized description of the subsurface strata encountered in the explorations is presented below, in order of increasing depth. A summary of subsurface conditions is provided in **Table 1**.

<u>Asphalt and Topsoil</u>– A surficial, approximate 0.3-foot thick layer of asphalt was encountered at the ground surface at GZ-1 and GZ-3 and a surficial, approximate 0.3-foot thick layer of Topsoil was encountered at the ground surface at GZ-2 and GZ-4.

<u>Embankment Fill</u> – Embankment Fill was encountered below the asphalt at GZ-1 and GZ-3. The Embankment Fill ranged from about 4.7- to 10.7-feet thick. Embankment Fill generally consisted of fine to coarse sand with up to 50% silt and up to 20% gravel. SPT N-values in the Embankment Fill ranged from 4 to 15 which indicates a relative density that ranged from loose to medium dense.

<u>Core Wall</u> – A Core Wall was encountered below the Embankment Fill at crest boring GZ-1 and was approximately 4.5 feet thick. Based on an 18-inch long core performed through the core wall and observation of the drilling wash cuttings, the Core Wall does not appear to be grouted or made of concrete and consists of a field stone, dry-stacked wall. The Core Wall was not encountered at crest boring GZ-3.

<u>Fill</u> –Fill was encountered below Topsoil at the two test borings (GZ-2 and GZ-4) at the embankment toe. The Fill ranged from about 5- to 7.5-feet thick. The Fill generally consisted of fine to coarse sand with up to 50% silt and up to 50% gravel. SPT N-values in the Fill ranged from 3 to 18 which indicates a relative density that ranged from loose to medium dense.

<u>Glacial Till</u> –Glacial Till was encountered in each test borings at depths ranging between 5 to 11 feet below ground surface, corresponding between El. 574.9 feet and El. 578.5 feet. The Glacial Till generally consisted of



sand with up to 50% gravel and up to 30% silt. SPT N-values in the Glacial Till ranged from 21 to 84 which indicates a relative density that ranged from medium dense to very dense.

<u>Bedrock</u> – The depth to bedrock ranged from 19 to 28.5 feet below grade, corresponding to El. 555.8 to 563.4 feet. Bedrock was confirmed in test borings GZ-2, GZ-3 and GZ-4 by collecting rock cores. Bedrock was inferred in GZ-1 based on drilling and split spoon refusal. The bedrock generally consisted of hard, slightly weathered, slightly fractured, fine to medium grained, gray GNEISS. The rock core recovery values ranged from 72 to 100 percent and the RQD values ranged from 68 percent to 97 percent. Photographs of the rock cores are presented in **Appendix E**.

<u>Groundwater</u> – Groundwater depths were measured within each of the explorations and installed observation wells at the times and conditions noted on the logs. GZA also measured groundwater within the existing observation wells installed as part of the Lenard exploration program. Groundwater below the crest of the dam ranged from about 4.9 to 7.1 feet, corresponding to about El. 581.0 feet and 583.3 feet. Groundwater at the embankment toe ranged from 0.9 to 3.4 feet, corresponding to El. 578.0 feet to 580.1 feet. Fluctuations in groundwater levels will vary due to the water surface elevation in Mirror Lake, seasonal variations in rainfall, temperature, and other factors different than those prevailing at the time the readings were taken. The measured groundwater levels are included on the exploration logs in **Appendix B** and are summarized on **Table 2- Summary of Groundwater Measurements**.

## 4.0 HYDROLOGIC AND HYDRAULIC ANALYSIS

The objective of GZA's analysis was to perform an Incremental Damage Assessment (IDA) of the proposed dam configuration to support recommendation of an appropriate Spillway Design Flood (SDF). The methodologies of establishing the SDF with use of an IDA is consistent with methods described in FEMA<sup>3</sup> and FERC<sup>4</sup> guidance. IDA is an iterative process where the downstream flooding impacts with and without dam failure are compared. The SDF was then selected as "the flood flow above which the incremental increase in water surface elevation due to failure of the dam is no longer considered to present an unacceptable threat to downstream life and property," per FERC guidance. The dam failure analyses were performed in accordance with guidance provided by CT DEEP<sup>5</sup>.

The proposed dam configuration that was modeled during the IDA consisted of raising the earthen embankment to El. 589.08 feet (up to approximately 1 foot) and replacing the existing spillway with a notched spillway. The notched spillway was 8-feet long (weir length) at El. 583.5 feet and steps up to El. 587 feet where the spillway is 16-feet long (weir length). The new normal pool would be El. 583.5 feet, down from the current normal pool of El. 584.88 feet

<sup>&</sup>lt;sup>3</sup> Federal Emergency Management Agency. FEMA P-94 "Selecting and Accommodating Inflow Design Floods for Dams". 2013.

<sup>&</sup>lt;sup>4</sup> Federal Energy Regulatory Commission. Chapter II "Selecting and Accommodating Inflow Design Floods for Dams". Revised 2015.

<sup>&</sup>lt;sup>5</sup> "Guidance Document for EAPs", CT DEEP, Dam Safety Program, published May 2016.



#### 4.1 <u>HYDROLOGIC ANALYSIS</u>

GZA utilized the previously developed HEC-HMS version 4.3 hydrologic model prepared as part of the previous Hazard Classification Analysis (GZA 2019) for Mirror Lake Dam. As discussed in the Hazard Classification Analysis Report, part of the campus drains to Mirror Lake. The rainfall-runoff routing inputs are summarized in **Tables 3**, **4** and **5** below. GZA used the watershed parameters published by BVH Integrated Services (BVH). BVH divided the contributing watershed into 2 subwatersheds, called IIA-1 and IIA-2. A map of the subwatersheds, extracted from BVH's report, is presented in **Appendix F**.

| Parameter               | Inputs*             |                     |  |  |  |
|-------------------------|---------------------|---------------------|--|--|--|
| Subwatershed            | IIA-1               | IIA-2               |  |  |  |
| Drainage Area (sq. mi.) | 0.23                | 0.04                |  |  |  |
| Loss Method             | SCS Curve Number    | SCS Curve Number    |  |  |  |
| Curve Number            | 75.7                | 63.9                |  |  |  |
| Transform Method        | SCS Unit Hydrograph | SCS Unit Hydrograph |  |  |  |
| Lag Time** (minutes)    | 9                   | 30.6                |  |  |  |

#### Table 3: HEC-HMS Subwatershed Inputs

\* Parameters were obtained from "CAMPUS DRAINAGE MASTERPLAN", Vol I & IV of VI, BVH Integrated Services, Draft February 13, 2018. The lag time was obtained by multiplied the time of concentration (presented in BVH's report) by 0.6.

#### Table 4: HEC-HMS Dam and Reservoir Inputs

| Parameter | Inputs                                                        |
|-----------|---------------------------------------------------------------|
| Reservoir | Elevation-Storage Curve (see Appendix C)                      |
| Dam       | Proposed Dam Top and Spillway crest length and elevation from |
|           | Section 2.0                                                   |
|           | Dam Top weir coefficient = 2.6*                               |
|           | Spillway crest weir coefficient = 2.74*                       |

\* Parameters were obtained from "CAMPUS DRAINAGE MASTERPLAN", Vol I & IV of VI, BVH Integrated Services, Draft February 13, 2018.

| Table 5. HEC-HWS Frecipitation inputs |                              |  |  |
|---------------------------------------|------------------------------|--|--|
| Recurrence                            | 24-hour Precipitation Depth* |  |  |
| Interval                              |                              |  |  |
| 50-Year                               | 6.9                          |  |  |
| 100-Year                              | 7.8                          |  |  |
| 200-Year                              | 8.8                          |  |  |
| 500-Year                              | 10.3                         |  |  |

#### Table 5: HEC-HMS Precipitation Inputs

\* Depths provided by NOAA Atlas 14. Storms were temporally distributed using WinTR-20.

The computed peak inflow, outflow, and water surface elevation at Mirror Lake Dam are presented in Table 6.



|  | Table ( | 6: HEC | -HMS ( | Outputs | for | Mirror | Lake | Dam |
|--|---------|--------|--------|---------|-----|--------|------|-----|
|--|---------|--------|--------|---------|-----|--------|------|-----|

| Recurrence<br>Interval | Peak Inflow<br>(cfs) | Peak Outflow<br>(cfs) | Peak Water Surface<br>Elevation (feet,<br>NAVD88) |
|------------------------|----------------------|-----------------------|---------------------------------------------------|
| 50-Year                | 540                  | 170                   | 587.3                                             |
| 100-Year               | 630                  | 210                   | 587.8                                             |
| 200-Year               | 750                  | 270                   | 588.3                                             |
| 500-Year               | 900                  | 340                   | 588.9                                             |

#### 4.2 HYDRAULIC ANALYSIS

To evaluate the extent of flooding due to potential failure of Mirror Lake Dam, GZA performed hydraulic simulations of hypothetical dam break floods. GZA conducted dam break analyses using the two-dimensional, unsteady, mixed flow regimes within HEC-RAS for the following scenarios:

- 1. 100-year flood.
- 2. 200-year flood.
- 3. 500-year flood.

The previously developed HEC-RAS model prepared as part of the previous Hazard Classification Analysis (GZA 2019) for Mirror Lake Dam was used for the dam breach analyses. Refer to the 2019 report for parameter inputs and methodology. For the various flood conditions modeled, GZA set the lake elevation to the peak water surface elevation calculated from HEC-HMS (see Table 6) for each flood. GZA added the outflow hydrograph for each storm from HEC-HMS as an inflow hydrograph at the upstream limit of the HEC-RAS 2D Flow Area.

Dam breach parameters, based on recommended range of values published in the FERC guidelines<sup>6</sup> and based on engineering judgment, are summarized in **Table 7** below. GZA performed the simulations using the Full Saint Venant Equations, which is the recommended method in the HEC-RAS 2D Modeling User's Manual (published February 2016). GZA performed the simulations with a 5-second timestep.

| Flood<br>Condition | Trigger<br>Failure at<br>Set Time<br>(Hr:Min) | Breach<br>Formation<br>Shape | Breach<br>Bottom<br>Width (ft) | Breach<br>Bottom<br>Elevation<br>(feet,<br>NAVD88) | Final<br>Breach<br>Slide<br>Slope<br>H:V | Time to<br>Maximum<br>Breach<br>(hrs) | Reservoir<br>Elevation<br>(feet,<br>NAVD88) |
|--------------------|-----------------------------------------------|------------------------------|--------------------------------|----------------------------------------------------|------------------------------------------|---------------------------------------|---------------------------------------------|
| 100-Year<br>Flood  | 12:36*                                        | Trapezoidal                  | 27.5                           | 580                                                | 1:2                                      | 0.5                                   | 587.8                                       |
| 200-Year<br>Flood  | 12:36*                                        | Trapezoidal                  | 27.5                           | 580                                                | 1:2                                      | 0.5                                   | 588.3                                       |
| 500-Year<br>Flood  | 12:36*                                        | Trapezoidal                  | 27.5                           | 580                                                | 1:2                                      | 0.5                                   | 588.9                                       |

#### Table 7: Summary of Dam Breach Parameters for Mirror Lake Dam

<sup>&</sup>lt;sup>6</sup> Chapter II, Appendix II-A of the "Engineer Guidelines for the Evaluation of Hydropower Projects, FERC, July 2015.



\*Time of maximum water surface elevation in Mirror Lake (from HEC-HMS model).

#### 4.3 DAM BREACH RESULTS

The peak dam breach flows through the dam for the various breach scenarios are summarized in **Table 8**. Maximum water surface elevations at the downstream culverts are shown in **Tables 9** through **11** below. An inundation map presenting the downstream culverts/roadways, the estimated 500-year flood and 500-year breach inundation is presented in **Appendix K**.

#### Table 8: Peak Flows Including Dam Breach through Proposed Mirror Lake Dam

| Flood     | Peak Flow (CFS) |
|-----------|-----------------|
| Condition |                 |
| 100-Year  | 330             |
| 200-Year  | 670             |
| 500-Year  | 825             |

#### Table 9: Water Surface Elevation Results at Modeled Structures, 100-Year Flood

|                         | Hoodwator                     | Breach Scenario                           |                                       |                                             | Overtopping                                |                                      |
|-------------------------|-------------------------------|-------------------------------------------|---------------------------------------|---------------------------------------------|--------------------------------------------|--------------------------------------|
| Structure               | (HW) or<br>Tailwater<br>(TW)* | 100-yr<br>Flood<br>No Breach<br>(El., ft) | 100-yr Flood<br>+ Breach<br>(El., ft) | 100-yr<br>Flood<br>Incremental<br>Rise (ft) | Overtopping<br>Depth,<br>No Breach<br>(ft) | Overtopping<br>Depth,<br>Breach (ft) |
| Mirror Lake Dam         | HW Stage<br>(ft)              | 587.8                                     | 587.8                                 | 0.0                                         | 0.0                                        | 0.0                                  |
|                         | TW Stage<br>(ft)              | 580.6                                     | 583.4                                 | 3.4                                         | 0.0                                        | 0.0                                  |
| 30 Inch DS              | HW Stage<br>(ft)              | 576.3                                     | 577.9                                 | 1.6                                         | 0.7                                        | 23                                   |
| (.03 miles downstream)  | TW Stage<br>(ft)              | 575.1                                     | 577.8                                 | 2.7                                         | 0.7                                        | 2.5                                  |
| Route 195               | HW Stage<br>(ft)              | 574.4                                     | 577.6                                 | 3.2                                         | 16                                         | 1 7                                  |
| (.06 miles downstream)  | TW Stage<br>(ft)              | 571.4                                     | 573.7                                 | 2.3                                         | -1.0                                       | 1.7                                  |
| Willowbrook Foot Bridge | HW Stage<br>(ft)              | 569.8                                     | 571.4                                 | 1.6                                         | 0.8                                        | 2.4                                  |
| (.09 miles downstream)  | TW Stage<br>(ft)              | 566.4                                     | 568.5                                 | 2.1                                         | 0.8                                        | 2.4                                  |
| Gurleyville, Culvert 1  | HW Stage<br>(ft)              | 529.0                                     | 530.4                                 | 1.4                                         | 0.0                                        | 2.2                                  |
| (0.2 miles downstream)  | TW Stage<br>(ft)              | 522.1                                     | 523.3                                 | 1.2                                         | 0.9                                        | 2.3                                  |



Page | 9

| Gurleyville, Culvert 2 | HW Stage<br>(ft) | 473.4 | 475.0 | 1.6 | -3.5 | -1.9 |
|------------------------|------------------|-------|-------|-----|------|------|
| (0.9 miles downstream) | TW Stage<br>(ft) | 472.9 | 473.9 | 1.0 | -3.5 |      |
| Gurleyville, Culvert 3 | HW Stage<br>(ft) | 385.9 | 388.1 | 2.3 | 1 7  | 0.6  |
| (1.1 miles downstream) | TW Stage<br>(ft) | 380.7 | 381.2 | 0.5 | -1.7 |      |
| DS Driveway            | HW Stage<br>(ft) | 314.1 | 316.6 | 2.6 | 2.0  | -0.4 |
| (1.2 miles downstream) | TW Stage<br>(ft) | 311.6 | 312.6 | 0.9 | -5.0 |      |

# Table 10: Water Surface Elevation Results at Modeled Structures, 200-year Flood

|                            | Breach Scenario               |                                        |                                       | Overtopping                                 |                                         |                                      |
|----------------------------|-------------------------------|----------------------------------------|---------------------------------------|---------------------------------------------|-----------------------------------------|--------------------------------------|
| Structure                  | (HW) or<br>Tailwater<br>(TW)* | 200-yr Flood<br>No Breach<br>(El., ft) | 200-yr Flood<br>+ Breach<br>(El., ft) | 200-yr<br>Flood<br>Incremental<br>Rise (ft) | Overtopping<br>Depth, No<br>Breach (ft) | Overtopping<br>Depth,<br>Breach (ft) |
| Mirror Lake Dam            | HW Stage<br>(ft)              | 588.3                                  | 588.3                                 | 0.0                                         | 0                                       | 0                                    |
|                            | TW Stage<br>(ft)              | 580.9                                  | 583.8                                 | 3.8                                         | 0                                       | 0                                    |
| 30 Inch DS                 | HW Stage<br>(ft)              | 576.5                                  | 578.2                                 | 1.6                                         | 0.9                                     | 2.5                                  |
| (.03 miles downstream)     | TW Stage<br>(ft)              | 576.1                                  | 578.1                                 | 2.0                                         | 0.9                                     |                                      |
| Route 195                  | HW Stage<br>(ft)              | 575.9                                  | 577.8                                 | 1.9                                         | -0.1                                    | 1.8                                  |
| (.06 miles downstream)     | TW Stage<br>(ft)              | 571.8                                  | 574.0                                 | 2.2                                         | -0.1                                    |                                      |
| Willowbrook<br>Foot Bridge | HW Stage<br>(ft)              | 570.0                                  | 571.6                                 | 1.7                                         | 1.0                                     |                                      |
| (.09 miles downstream)     | TW Stage<br>(ft)              | 566.6                                  | 568.7                                 | 2.1                                         | 1.0                                     | 2.0                                  |
| Gurleyville, Culvert 1     | HW Stage<br>(ft)              | 529.2                                  | 530.5                                 | 1.4                                         | 1.0                                     | 2.4                                  |
| (0.2 miles downstream)     | TW Stage<br>(ft)              | 522.2                                  | 523.4                                 | 1.2                                         | 1.0                                     | 2.4                                  |
| Gurleyville, Culvert 2     | HW Stage<br>(ft)              | 473.7                                  | 475.5                                 | 1.8                                         | -3.2                                    | -1.4                                 |



Page | 10

| (0.9 miles downstream) | TW Stage<br>(ft) | 473.1 | 474.1 | 1.0 |      |     |  |
|------------------------|------------------|-------|-------|-----|------|-----|--|
| Gurleyville, Culvert 3 | HW Stage<br>(ft) | 386.1 | 388.6 | 2.6 | -15  | 1 1 |  |
| (1.1 miles downstream) | TW Stage<br>(ft) | 380.6 | 381.5 | 0.9 | -1.5 | 1.1 |  |
| DS Driveway            | HW Stage<br>(ft) | 314.7 | 317.1 | 2.4 | 2.2  | 0.1 |  |
| (1.2 miles downstream) | TW Stage<br>(ft) | 311.8 | 312.7 | 0.9 | -2.3 | 0.1 |  |

## Table 11: Water Surface Elevation Results at Modeled Structures, 500-year Flood

|                            | Headwater                     |                                        | Breach Scenario                       | 1                                           | Overtopping                             |                                      |
|----------------------------|-------------------------------|----------------------------------------|---------------------------------------|---------------------------------------------|-----------------------------------------|--------------------------------------|
| Structure                  | (HW) or<br>Tailwater<br>(TW)* | 500-yr Flood<br>No Breach<br>(El., ft) | 500-yr Flood<br>+ Breach<br>(El., ft) | 500-yr<br>Flood<br>Incremental<br>Rise (ft) | Overtopping<br>Depth, No<br>Breach (ft) | Overtopping<br>Depth,<br>Breach (ft) |
| Mirror Lake Dam            | HW Stage<br>(ft)              | 588.9                                  | 588.9                                 | 0.0                                         | 0                                       | 0                                    |
|                            | TW Stage<br>(ft)              | 581.2                                  | 583.8                                 | 3.8                                         | 0                                       | 0                                    |
| 30 Inch DS                 | HW Stage<br>(ft)              | 576.8                                  | 578.3                                 | 1.5                                         | 1 2                                     | 2 0                                  |
| (.03 miles downstream)     | TW Stage<br>(ft)              | 576.7                                  | 578.2                                 | 1.6                                         | 1.5                                     | 2.0                                  |
| Route 195                  | HW Stage<br>(ft)              | 576.5                                  | 577.9                                 | 1.5                                         | 0.5                                     | 2.0                                  |
| (.06 miles downstream)     | TW Stage<br>(ft)              | 572.2                                  | 574.1                                 | 1.9                                         | 0.5                                     |                                      |
| Willowbrook<br>Foot Bridge | HW Stage<br>(ft)              | 570.2                                  | 571.8                                 | 1.6                                         | 1 0                                     | 2 0                                  |
| (.09 miles downstream)     | TW Stage<br>(ft)              | 566.9                                  | 569.0                                 | 2.1                                         | 1.2                                     | 2.0                                  |
| Gurleyville, Culvert 1     | HW Stage<br>(ft)              | 529.3                                  | 530.8                                 | 1.4                                         | 1 0                                     | 2 7                                  |
| (0.2 miles downstream)     | TW Stage<br>(ft)              | 522.4                                  | 523.5                                 | 1.1                                         | 1.2                                     | 2.7                                  |
| Gurleyville, Culvert 2     | HW Stage<br>(ft)              | 474.0                                  | 476.3                                 | 2.3                                         | -2.9                                    | .0.6                                 |
| (0.9 miles downstream)     | TW Stage<br>(ft)              | 473.3                                  | 474.4                                 | 1.1                                         | -2.9                                    | -0.0                                 |



Page | 11

| Gurleyville, Culvert 3 | HW Stage<br>(ft) | 386.8 | 389.2 | 2.4 | 0.7  | 1 7 |  |
|------------------------|------------------|-------|-------|-----|------|-----|--|
| (1.1 miles downstream) | TW Stage<br>(ft) | 380.8 | 381.8 | 0.9 | -0.7 | 1.7 |  |
| DS Driveway            | HW Stage<br>(ft) | 315.2 | 317.3 | 2.2 | 1.0  | 0.3 |  |
| (1.2 miles downstream) | TW Stage<br>(ft) | 312.1 | 312.8 | 0.7 |      | 0.5 |  |

\* Headwater (HW) Stage is the maximum water surface elevation at the structure's upstream side. Tailwater (TW) Stage is the maximum water surface elevation at the structure's downstream side. Negative overtopping values indicate that the structure is not overtopped.

#### 4.4 **RECOMMENDED SPILLWAY DESIGN FLOOD**

CT DEEP Dam Safety Regulations do not provide guidance on minimum Spillway Design Floods. However, the U.S. Army Corps of Engineers (ACOE) provides guidance regarding design storms for various dam size classifications and hazard classifications. Mirror Lake Dam fits the classification of existing Small size dams and the suggested ACOE design storm criteria are summarized in **Table 12** below.

| Table 12: ACOE Recommended Design Floods for Small Size, Existing Dams |                                              |  |  |  |
|------------------------------------------------------------------------|----------------------------------------------|--|--|--|
| Hazard Classification                                                  | Design Flood                                 |  |  |  |
| Class A or Class BB                                                    | 100-year                                     |  |  |  |
| Class B                                                                | 100-year to 500-year                         |  |  |  |
| Class C                                                                | 1,000-year to ½ Probable Maximum Flood (PMF) |  |  |  |

mmandad Dacian Elaada far Small Siza, Evicting Dama

Mirror Lake Dam appears to meet the CT DEEP Dam Safety requirements for a hazard classification C (high hazard) dam based on overtopping of State Route 195, an arterial road (Based on Connecticut Department of Transportation classification map), during a hypothetical dam breach. Based on GZA's previous dam failure analyses and judgment, the Route 195 crossing is the only sensitive location with respect to the dam's potential for a Class C hazard rating. The dam breach flood does not appear to inundate occupied structures. Gurleyville Road Culvert 3 passes the 500-year flood, but fails to pass the 500-year flood with a dam breach, subjecting Gurleyville Road to damage. However, Gurleyville Road is a collector road and damage to collector roads would be consistent with a Hazard Class B rating. For Class C dams, the ACOE recommended design storm is the 1,000year flood to ½ Probable Maximum Flood. However, GZA's IDA indicates that Route 195 is subject to damage and/or destruction during the natural 500-year flood with or without dam failure. The roadway is expected to overtop by approximately 0.5 foot during the natural flood, without dam failure. Additionally, incremental depths due to dam failure downstream of the dam during the 500-year flood are generally on the order of approximately 2 feet or less. Therefore, the incremental consequence of dam failure during the 500-year design flood is judged to be insignificant and GZA recommends the 500-year flood as the SDF.

The peak water surface during the 500-year flood is El. 588.9 feet and the minimum embankment elevation should be EL. 589.9 feet as CT DEEP Dam Safety requires a minimum 1-foot of freeboard during the SDF.



#### 5.0 GEOTECHNICAL ANALYSIS

GZA performed geotechnical analyses for Mirror Lake Dam including seepage, slope stability, gravity structure stability and liquefaction assessments. The objective of the geotechnical analysis was to evaluate the stability of the earthen embankment and concrete spillway based on proposed improvements, mainly from raising the embankment to provide a minimum 1-foot freeboard during the Spillway Design Flood (SDF). The analyses were performed to design the proposed improvements such that they will meet the minimum required factors of safety for stability based on the state of practice guidance.

#### 5.1 ENGINEERING PROPERTIES

**Table 13** below presents the engineering properties used in the proposed conditions geotechnical analyses. The soil properties used in the analyses were estimated based on the results of the subsurface explorations, laboratory testing program, empirical formulas and published data for similar materials.

| Total                       |                      | Effective Strength |                    | Total S                       | trength           | Saturated         |                                  |  |  |  |
|-----------------------------|----------------------|--------------------|--------------------|-------------------------------|-------------------|-------------------|----------------------------------|--|--|--|
|                             | Unit<br>Weight,      | Cohesion,          | Friction<br>Angle, | Cohesion,                     | Friction          | Horizo<br>Permeab | ontal<br>ility, k <sub>sat</sub> |  |  |  |
| Strata                      | γ <sub>t</sub> (pcf) | c' (psr)           | φ'(°)              | c' (psr)                      | Angle, φ'(°)      | ft/day            | cm/s                             |  |  |  |
| Structural Fill             | 125                  | 0                  | 34                 | Same as effective<br>strength |                   | 3.00              | 1E-03                            |  |  |  |
| Embankment Fill             | 120                  | 0                  | 29                 | 300                           | 10                | 0.02              | 7E-06                            |  |  |  |
| Improved<br>Embankment Fill | 120                  | 0                  | 32                 | 300                           | 10                | 0.02              | 7E-06                            |  |  |  |
| Toe Drain                   | 120                  | 0                  | 33                 | Same as effective<br>strength |                   | 25.00             | 9E-03                            |  |  |  |
| Glacial Till                | 130                  | 0                  | 38                 | Same as effective<br>strength |                   | 0.70              | 2E-04                            |  |  |  |
| Core Wall                   | 130                  | 0                  | 35                 | Same as<br>stre               | effective<br>ngth | 0.020             | 7E-06                            |  |  |  |
| Bedrock                     |                      |                    | Impenetra          | ble                           |                   | 2E-04             | 7E-08                            |  |  |  |

| <b>Table 13: Material Pro</b> | perties used in GZA's See | page and Stability Analy | yses for Mirror Lake Dam |
|-------------------------------|---------------------------|--------------------------|--------------------------|
|-------------------------------|---------------------------|--------------------------|--------------------------|

Notes:

1) Unit weights based on typical values for similar materials

- 2) Effective friction angles are based on correlations from SPT-N testing
- 3) Permeability values are based on typical values for similar materials and empirical correlation from grain size distributions.

Refer to **Appendix G** for backup calculations supporting the material properties.

### 5.2 SEISMIC SITE PARAMETERS

In order to estimate the potential for amplification of bedrock accelerations due to the overlying soil conditions, GZA performed a site class calculation in accordance with ASCE 7-10 Standard. SPT N-Values of samples located



within the upper 100-feet of the soil column were utilized in the analysis. Conditions encountered in the test borings indicate a Site Class D is currently present at the site. The site class calculation is attached in **Appendix H**.

GZA obtained ground motion parameters for the site latitude and longitude using the ASCE 7 Online Hazard Tool. The website allows the user to input the site's latitude and longitude, risk category, and site class in order to obtain site-specific seismic parameters in accordance with the 2010 ASCE 7 Standard "Minimum Design Loads for Buildings and Other Structures". The acceleration parameter outputs from the ASCE 7 Online Hazard Tool are provided in **Appendix H.** 

The maximum average ground accelerations acting on the embankment were calculated from the peak ground acceleration and adjusted for site class and embankment height in accordance with NCRHP Report 611 "Seismic Analysis and Design of Retaining Walls, Buried Structures, Slopes, and Embankments". The calculations resulted in a pseudostatic acceleration to be used in the stability analyses described herein. The calculations and a summary of the resulting values are provided in **Appendix H.** 

### 5.3 LIQUEFACTION ANALYSIS

Using the SPT N-Values obtained from GZA borings GZ-1 through GZ-4, the peak ground acceleration obtained from ASCE 7 Online Hazard Tool, and an assumed design earthquake magnitude (M = 6.0), GZA performed a liquefaction analysis of the site soils based on the procedures outlined in Idriss and Boulanger (2014).

Based on our assessment, the Embankment Fill and underlying Glacial Till are not considered susceptible to liquefaction during the design earthquake acceleration and magnitude. In addition, estimated seismically induced settlements are on the order of less than 1-inch and would not have a significant effect on available freeboard, or the overall slope stability. The liquefaction analyses results are included in **Appendix H**.

### 5.4 SEEPAGE ANALYSIS

GZA performed steady-state seepage analyses for Mirror Lake Dam under normal operating conditions (Normal Pool) and under the SDF conditions (Flood Pool). GZA used SEEP/W<sup>®</sup> by Geo-Slope International, Ltd. GeoStudio 2021), an industry standard, two-dimensional, finite element-based seepage analysis software package, for the seepage analyses. The software was used to estimate the location of the phreatic surface through the dam, to estimate the pore pressures at specific finite element nodes, and to estimate exit gradients at specific element nodes, e.g., near the toe of the dam.

The Normal Pool reservoir elevation (EL. 583.5 ft) and the SDF (i.e. 500-year flood = EL. 588.9 ft) used in the seepage analyses were based on the hydrologic and hydraulic (H&H) analyses performed by GZA. See Section 4.4 of this report.

The resulting flow and exit gradients the model estimates are then compared to the limiting gradient criteria of 1. The results of the seepage analyses are typically imported into GeoStudio's SLOPE/W software as a set of input data to support the slope stability analysis. The process typically starts with the assignment of permeability values to the soil strata based on field, laboratory or correlated data. The seepage model is then run and evaluated against piezometer/observation well data for a given lake/tailwater condition. Using the results of the seepage analysis, the permeability values of the various strata are adjusted to "calibrate" the



seepage model. Once the seepage model generates results that generally match existing instrument readings, the model can be used to extrapolate seepage conditions for storm events with higher lake levels beyond those associated with existing instrumentation readings. The effect of proposed drainage features such as internal drains and toe drains can also be simulated in the seepage model.

### 5.4.1 SEEPAGE ANALYSIS RESULTS

GZA developed a typical cross section, Cross Section A-A', of the existing conditions at the dam in GeoStudio 2021 software package using existing topographic survey and subsurface information obtained during the exploration program. Hydraulic conductivity values were assigned to various soil layers in the SEEP/W module and the model was run and evaluated against groundwater data collected during the subsurface investigations. The model produced similar groundwater conditions to what was observed at the site. Cross Section A-A' is attached in **Appendix H** and the location of the cross section is presented on **Figure 2**.

Using the same seepage parameters from the existing conditions, Cross Section A-A' was updated for the proposed dam conditions and a seepage evaluation was performed. The maximum exit gradient of seepage at the toe of the dam was calculated to be 0.2 for normal Pool and SDF conditions. The *critical gradient* is the gradient level at which soil transport is assumed to begin. Taking the critical gradient as 1.0, as is typically done for sands<sup>7</sup>, the safety factor against potential piping failure for proposed conditions is 5. Due to the significant uncertainties inherent in such seepage calculations, the recommend factor of safety against seepage failure (i.e. piping) ranges from 2.5 to 3<sup>8</sup>. The proposed conditions factor of safety against piping exceeds the minimum requirements, as shown in **Table 14**, below. Graphic results of steady state analyses for Mirror Lake Dam under normal pool and SDF conditions are presented in **Appendix H**.

| Table 14. Seepage Analysis Results |                                  |                                       |                                     |             |  |  |  |  |
|------------------------------------|----------------------------------|---------------------------------------|-------------------------------------|-------------|--|--|--|--|
| Pool Elevation                     | Computed<br>Exit<br>Gradient, ie | Critical<br>Gradient, i <sub>cr</sub> | FS, i <sub>cr</sub> /i <sub>e</sub> | Required FS |  |  |  |  |
| Normal (El. 583.5ft)               | 0.2                              | 1.0                                   | 5.0                                 | 2.5 - 3.0   |  |  |  |  |
| 500-Year Flood (El. 590ft)         | 0.2                              | 1.0                                   | 5.0                                 | 2.5 - 3.0   |  |  |  |  |

#### **Table 14: Seepage Analysis Results**

#### 5.5 SLOPE STABILITY ANALYSIS

The stability of the slopes of an embankment dam is an important factor in the overall safety of the structure. Earthen slopes of a dam must have sufficient capacity to resist sliding or rotational failure under a variety of loading conditions. CTDEEP Dam Safety Regulations do not provide prescriptive minimum factors of safety for slope stability; Therefore, the guidelines established in the U.S. Army Corps of Engineers document entitled "Slope Stability - EM-1110-2-1902", dated October 31, 2003 will be used as the minimum requirements. The safety factors are a function of several different parameters, including soil type, soil strength, slope angle, phreatic surface and pore pressure distribution, and loading conditions.

<sup>&</sup>lt;sup>7</sup>USACE EM1110-2-1901, "Seepage Analysis and Control for Dams"

<sup>&</sup>lt;sup>8</sup> Cedergren, H.R.; Seepage, Drainage and Flow Nets. 1977



GZA performed slope stability analyses for the proposed conditions at Mirror Lake Dam, which calculated a factor of safety against slope instability under various loading conditions. The slope stability models were created using SLOPE/W<sup>®</sup> (2021), a two-dimensional limit equilibrium-based software program created by Geo-Slope International, Ltd. The SLOPE/W<sup>®</sup> program searches for the critical failure surface between failure surface initiation and termination points set by the user. The method of analysis selected by GZA was Spencer's Method since it is a "complete" equilibrium method where all static equilibrium conditions (both sliding and rotation) are satisfied. The method of analysis divides the dam embankment into a series of vertical slices along the circular failure surface. The stability of each slice was then determined to calculate the overall factor of safety for the entire failure surface and the output will be presented in graphical form.

The slope stability analysis was performed on the same cross section, Cross Section A-A', of the dam as analyzed in the previously described seepage analyses. This allowed the pore pressures calculated within and below the dam from the SEEP/W<sup>®</sup> runs to be imported directly into the SLOPE/W<sup>®</sup> slope stability model. Iterative changes were made to the cross section until the minimum factors of safety were met.

Proposed Cross Section A-A' is provided in **Appendix H** and the location of the cross section is presented on **Figure 2**.

## 5.5.1 SLOPE STABILITY ANALYSIS RESULTS

The proposed conditions were modeled and the results for the given loading conditions and required minimum factors of safety against slope failure are presented in **Table 15** below. The proposed conditions meet or exceed the minimum guidelines from the ACOE. Refer to the calculations in **Appendix H** for additional information.

| Leed |                                    |            | Slope Stability Factor of Safety |            |  |  |
|------|------------------------------------|------------|----------------------------------|------------|--|--|
| Case | Loading Condition                  | Dam Face   | Required FS<br>(USACE)*          | Calculated |  |  |
| 1    | Rapid Drawdown from Flood Level    | Upstream   | 1.1                              | 1.9        |  |  |
| 2    | Rapid Drawdown from Normal<br>Pool | Upstream   | 1.3                              | 1.9        |  |  |
| 2    | Steady-state seepage at Normal Up  |            | 1 5                              | 1.8        |  |  |
| 3    | Pool                               | Downstream | 1.5                              | 1.7        |  |  |
| 4    | Steady-state seepage at Flood      | Upstream   | 1 4                              | 2.3        |  |  |
| 4    | Pool                               | Downstream | 1.4                              | 1.4        |  |  |
| -    | Forthquake at Normal Deal          | Upstream   | 1.0*                             | 1.2        |  |  |
| Э    | Eartiquake at Normal Pool          | Downstream | 1.0                              | 1.1        |  |  |

## Table 15: Proposed Conditions - Slope Stability Analysis Results

\*Required factors of safety are based on USACE guidelines except for seismic case, where a minimum factor of safety greater than 1.0 is typically used in dam engineering practice.



#### 5.6 SPILLWAY GRAVITY ANALYSIS

GZA performed a gravity analysis for the proposed spillway cross section, which was analyzed using the guidelines established in the U.S. Army Corp of Engineers document entitled "Gravity Dam Design - EM 1110-2-2200", dated June 30, 1995 and EM 1110-2-2100, "Stability Analysis of Concrete Structures."

The USACE's guidance for establishing the required factors of safety/acceptance criteria for a given structure requires two initial steps: 1) evaluating the likelihood of each load case, and 2) establishing the quality of the site information. The USACE's minimum required factors of safety/acceptance criteria for a critical (i.e., high hazard) structure are defined by one of two categories of site information, "well-defined site information" and "ordinary site information." Both categories require that the foundation strengths and loading conditions be established with a high level of confidence. However, for a site to qualify as "well-defined," the Corps states that measured uplift pressure data is required. For the purposes of GZA's analyses, Mirror Lake Dam was considered to be an "ordinary" site in that the available information is relatively limited, and also since there are no uplift pressure measurements.

A gravity analysis was performed assuming the proposed spillway is bearing on naturally-deposited glacial till. The proposed spillway cross section was analyzed for sliding, overturning and flotation. Bearing pressures developed at the toe of the concrete was evaluated against the capacity of the glacial till bearing layer and compressive strength of the concrete itself. Bearing pressures and uplift pressures were used to evaluate the stress conditions at the base of the spillway. If tensile stresses were found to exist along the plane of analysis, then a cracked base analysis was performed in accordance with the guidelines outlined in USACE EM 1110-2-2200. GZA evaluated the potential for a crack between the spillway and foundation to develop under each loading condition. If cracking was predicted, the crack length was iterated, and the resultant location was recomputed until force equilibrium is reached. Overturning stability was then re-evaluated based on the revised resultant location and sliding resistance was re-evaluated based on the "uncracked" portion of the base of the spillway.

#### 5.6.1 GRAVITY ANALYSIS RESULTS

**Table 16** below presents the calculated factors of safety for sliding and overturning of the proposed spillway cross section under the prescribed loading conditions. The location of the proposed cross section is presented in **Appendix J**. All prescribed loading conditions for the proposed cross section were calculated to meet or exceed the Corps' requirements for sliding, overturning, flotation, and bearing capacity. Refer to the calculations in **Appendix I** for additional information regarding the computed factors of safety for each requirement.

| Loading<br>Condition | Failure<br>Mode | Stability Criterion                 | Spillway<br>Section |
|----------------------|-----------------|-------------------------------------|---------------------|
| Normal Deal          | Sliding         | FS ≥ 2.0                            | 5.2                 |
| (El. 583.5)          | Overturning     | Resultant within middle 1/3 of base | $\checkmark$        |
| Flood Pool           | Sliding         | FS ≥ 1.7                            | 2.2                 |

### Table 16: Proposed Conditions - Spillway Gravity Analysis Results



| (El. 589)       | Overturning | Resultant within base               | ~            |
|-----------------|-------------|-------------------------------------|--------------|
| lea Loading at  | Sliding     | FS ≥ 2.0                            | 2.0          |
| Normal Pool     | Overturning | Resultant within middle 1/3 of base | ~            |
| Decudostatic at | Sliding     | FS ≥ 1.3                            | 1.9          |
| Normal Pool     | Overturning | Resultant within base               | $\checkmark$ |

2-2100

Notes: Stability criterion based on requirements for "ordinary" site information per EM 1110-

**\*** represents proposed condition not meeting requirement for location of resultant

✓ represents proposed condition meeting requirement for location of resultant

## 6.0 **PROPOSED CONDITIONS**

The proposed improvements to Mirror Lake Dam are required to address inadequate spillway capacity, downstream slope stability, and aesthetics. The proposed dam improvements consist of replacing the existing spillway with a concrete stepped spillway in the same general footprint, raising the earthen embankment, adding upstream erosion protection, and regrading the upstream and downstream slopes.

The lowest level of the stepped spillway will be 8-feet long (weir length) at El. 583.5 feet and then increase to 16-feet long at El. 587 feet. The spillway design flood will be the 500-year storm with a peak water surface of El. 588.9 feet. CT DEEP requires 1-foot of freeboard during the design flood. Therefore, the existing embankment will be raised to at least El. 589.9 feet. The proposed embankment top width will be 8 feet wide. Prior to adding new fill, the existing topsoil will need to be removed and the existing Embankment Fill will need to be proof compacted. Proof compaction consists of at least 4 passes of a large vibratory drum roller with a minimum static weight of 3,000 pounds per foot of drum width. Any localized weak or unstable areas identified during proof compaction should be excavated and replaced with engineered fill. The upstream and downstream slopes of the proposed embankment will be constructed as 3 horizontal to 1 vertical. On the upstream slope, riprap will be added from the upstream toe of the embankment to 1 foot below the top of dam to provide erosion protection, as well as to improve the stability.

A conventional toe drain with a perforated PVC pipe surrounded by free draining soils will be constructed at the downstream embankment toe. The toe drain will help lower the shallow groundwater at the toe of the dam, lower the groundwater table through the dam, and improve stability. The toe drain will discharge to the downstream channel.

The downstream channel will consist of a concrete apron that transitions to Roberts Brook. The Roberts Brook side channels will be lined with riprap for erosion/scour protection.

Concept sketches of the proposed embankment and spillway improvements are presented in Appendix J.



#### 6.1 ANTICIPATED CONSTRUCTION SEQUENCE

We understand the improvements to the dam will be constructed at the same time as the dredging of Mirror Lake. At this time, hydraulic dredging is anticipated to be the preferred dredging method, which will require water to be present in the Lake for the dredging equipment to maneuver. We anticipate a sheetpile cofferdam around the existing spillway will be required to demolish the existing spillway and construct the new spillway. While there is a cofferdam around the existing spillway, a temporary spillway will be needed through the embankment to pass normal flows during construction. The temporary spillway is anticipated to consist of a grouted or concrete-lined channel that extends from the impoundment, through the embankment, and to the downstream channel. The temporary spillway invert will be at the same elevation as the existing spillway. Riprap or other scour protection may be required where the temporary spillway discharges into the downstream channel. Due to the relatively limited access to the dam, consideration should be given to the temporary spillway location and sequencing so as not to cut off access from one side of the dam without properly planning ahead.

Once the new spillway has been constructed and backfilled, the cofferdam can be removed, and the temporary spillway can be removed and backfilled. The new spillway will have a crest elevation that is about 1.5 feet lower than existing spillway, so the normal lake level will be lower once the new spillway is constructed. If the hydraulic dredging is not completed and the equipment requires the additional freeboard, the cofferdam may need to remain in place to keep the lake levels higher. Once the cofferdam and temporary spillway are removed, the embankment improvements, including proof compacting the existing soil, adding new downstream and crest fill, adding upstream riprap and installing a toe drain, can be completed. The upstream riprap will be placed in the wet as there will not be a planned drawdown during construction.

### 6.2 ANTICIPATED PERMIT REQUIREMENTS

Based on our experience with dam improvement projects and discussion with regulators (CT DEEP Dam Safety & Water Quality and ACOE), the anticipated permits, including approval duration, for the dam improvements are anticipated to consist of:

| Regulator               | Permit ID                                | Estimated Approval<br>Duration |
|-------------------------|------------------------------------------|--------------------------------|
| CT DEEP Dam Safety      | Individual Permit                        | 5 - 7 months                   |
| CT DEEP Water Quality   | Section 401 Water Quality<br>Certificate | 5 – 7 months                   |
| CT DEEP Fisheries       | Determination of Need for<br>Fishway     | 1 – 2 months                   |
| Army Corps of Engineers | Pre-Construction Notification            | 5 – 7 months                   |
| CT DEEP NDDB            | Rare Species Review                      | 2 months                       |

GZA would coordinate with CT DEEP to confirm that a diversion permit is not required.



TABLES

#### TABLE 1 SUMMARY OF TEST EXPLORATION DATA

#### University of Connecticut Mirror Lake Dam Storrs, Connecticut

|                              | GZA TEST BORINGS <sup>1</sup> |       |       |       |  |  |  |  |  |  |
|------------------------------|-------------------------------|-------|-------|-------|--|--|--|--|--|--|
|                              | GZ-1                          | GZ-2  | GZ-3  | GZ-4  |  |  |  |  |  |  |
| Depth (ft) to:               |                               |       |       |       |  |  |  |  |  |  |
| Asphalt                      | 0                             | NE    | 0     | NE    |  |  |  |  |  |  |
| Embankment Fill              | 0.3                           | NE    | 0.3   | NE    |  |  |  |  |  |  |
| Core Wall                    | 5.0                           | NE    | NE    | NE    |  |  |  |  |  |  |
| Fill                         | NE                            | 0     | NE    | 0.0   |  |  |  |  |  |  |
| Glacial Till                 | 9.5                           | 7.5   | 11.0  | 5.0   |  |  |  |  |  |  |
| Bedrock                      | 25.5                          | 19.5  | 28.5  | 24.1  |  |  |  |  |  |  |
| Groundwater <sup>2</sup>     | 7.0                           | 3.3   | 7.1   | 1.9   |  |  |  |  |  |  |
| Bottom of Exploration        | 25.5                          | 24.9  | 33.5  | 29.1  |  |  |  |  |  |  |
| Thickness (ft) of:           |                               |       |       |       |  |  |  |  |  |  |
| Asphalt                      | 0.3                           | NE    | 0.3   | NE    |  |  |  |  |  |  |
| Embankment Fill              | 4.7                           | NE    | 10.7  | NE    |  |  |  |  |  |  |
| Core Wall                    | 4.5                           | NE    | NE    | NE    |  |  |  |  |  |  |
| Fill                         | NE                            | 7.5   | NE    | 5.0   |  |  |  |  |  |  |
| Glacial Till                 | 16.0                          | 12.0  | 17.5  | 19.1  |  |  |  |  |  |  |
| Approximate Elevations (ft): |                               |       |       |       |  |  |  |  |  |  |
| Ground Surface <sup>3</sup>  | 588.0                         | 582.9 | 588.1 | 579.9 |  |  |  |  |  |  |
| Top of Asphalt               | 588.0                         | NE    | 588.1 | NE    |  |  |  |  |  |  |
| Top of Embankment Fill       | 587.7                         | NE    | 587.8 | NE    |  |  |  |  |  |  |
| Top of Core Wall             | 583.0                         | NE    | NE    | NE    |  |  |  |  |  |  |
| Top of Fill                  | NE                            | 582.9 | NE    | 579.9 |  |  |  |  |  |  |
| Top of Glacial Till          | 578.5                         | 575.4 | 577.1 | 574.9 |  |  |  |  |  |  |
| Top of Bedrock               | 562.5                         | 563.4 | 559.6 | 555.8 |  |  |  |  |  |  |
| Groundwater <sup>2</sup>     | 581.0                         | 579.6 | 581.0 | 578.0 |  |  |  |  |  |  |
| Bottom of Exploration        | 562.5                         | 558.0 | 554.6 | 550.8 |  |  |  |  |  |  |

NE - Not encountered

Notes:

1. GZA test borings performed by Seaboard Drilling between January 8 to January 14, 2021 and observed by GZA.

2. Groundwater was encountered at the times and dates noted on the exploration logs and Table 2.

3. Ground surface elevations at test borings based on survey performed by GZA. Spillway (El. 584.88 feet) used as a benchmark and references NAVD88.

#### TABLE 2 Summary of Groundwater Measurements

#### University of Connecticut Mirror Lake Dam Storrs, Connecticut

| Observation Well<br>No. |                        | Ground                      | Measured Groundwater (feet) Depth and Elevation |       |         |       |         |       | nd Elevation |       |         |       |         |       |
|-------------------------|------------------------|-----------------------------|-------------------------------------------------|-------|---------|-------|---------|-------|--------------|-------|---------|-------|---------|-------|
|                         | Date Installed Surface | Surface                     | 1/8/21                                          |       | 1/11/21 |       | 1/12/21 |       | 1/13/21      |       | 1/14/21 |       | 1/26/21 |       |
|                         |                        | Elevation (ft) <sup>1</sup> | Depth                                           | EI.   | Depth   | EI.   | Depth   | EI.   | Depth        | El.   | Depth   | EI.   | Depth   | EI.   |
| GZ-1                    | 1/12/21                | 588.0                       |                                                 |       |         |       | 5.9     | 582.2 |              |       | 7.0     | 581.1 | 7.0     | 581.0 |
| GZ-2                    | 1/8/21                 | 582.9                       |                                                 |       | 3.6     | 579.3 | 3.2     | 579.7 |              |       | 3.4     | 579.6 | 3.3     | 579.7 |
| GZ-3                    | 1/14/21                | 588.1                       |                                                 |       |         |       |         |       |              |       | 6.7     | 581.4 | 7.1     | 581.0 |
| GZ-4                    | 1/13/21                | 579.9                       |                                                 |       |         |       |         |       |              |       | 1.9     | 578.1 | 1.9     | 578.0 |
| MW-B3                   | 5/3/04                 | 588.2                       | 4.9                                             | 583.3 | 5.0     | 583.2 | 5.2     | 583.0 | 5.4          | 582.8 | 5.5     | 582.7 | 5.5     | 582.7 |
| MW-B4                   | 5/3/04                 | 587.4                       | 5.0                                             | 582.4 | 5.8     | 581.6 | 5.9     | 581.5 | 6.1          | 581.3 | 6.2     | 581.2 | 6.2     | 581.2 |
| MW-B6                   | 5/7/04                 | 587.2                       | 5.7                                             | 581.5 | 5.7     | 581.6 | 5.8     | 581.4 | 5.9          | 581.4 | 5.9     | 581.3 | 5.9     | 581.3 |
| MW-B7                   | 10/8/04                | 581.0                       | 1.1                                             | 579.9 | 1.0     | 580.0 | 0.9     | 580.1 | 0.8          | 580.2 | 1.0     | 580.1 | 1.0     | 580.0 |

Notes:

1. Ground surface elevations at test borings based on survey performed by GZA. Spillway (El. 584.88 feet) used as benchmark and references NAVD88.



**FIGURES** 



3/30/2021 hxd Van Ę ifd\GIS\m: \46161-07 ē \* ₹. Univer 499\46161.h61 46,000-46 loho l <u>2</u> ~ GZA





# **APPENDIX A – LIMITATIONS**



#### **USE OF REPORT**

 GeoEnvironmental, Inc. (GZA) prepared this report on behalf of, and for the exclusive use of BVH Integrated Services (Client) for the stated purpose(s) and location(s) identified in the Report. Use of this report, in whole or in part, at other locations, or for other purposes, may lead to inappropriate conclusions; and we do not accept any responsibility for the consequences of such use(s). Further, reliance by any party not identified in the agreement, for any use, without our prior written permission, shall be at that party's sole risk, and without any liability to GZA.

#### **STANDARD OF CARE**

- 2. Our findings and conclusions are based on the work conducted as part of the Scope of Services set forth in the Report and/or proposal, and reflect our professional judgment. These findings and conclusions must be considered not as scientific or engineering certainties, but rather as our professional opinions concerning the limited data gathered during the course of our work. Conditions other than described in this report may be found at the subject location(s).
- 3. Our services were performed using the degree of skill and care ordinarily exercised by qualified professionals performing the same type of services at the same time, under similar conditions, at the same or a similar property. No warranty, expressed or implied, is made.

#### SUBSURFACE CONDITIONS

- 4. If presented, the generalized soil profile(s) and description, along with the conclusions and recommendations provided in our Report, are based in part on widely-spaced subsurface explorations by GZA and/or others, with a limited number of soil and/or rock samples and groundwater /piezometers data and are intended only to convey trends in subsurface conditions. The boundaries between strata are approximate and idealized, and were based on our assessment of subsurface conditions. The composition of strata, and the transitions between strata, may be more variable and more complex than indicated. For more specific information on soil conditions at a specific location refer to the exploration logs. The nature and extent of variations between these explorations may not become evident until further exploration or construction. If variations or other latent conditions then appear evident, it will be necessary to reevaluate the conclusions and recommendations of this report.
- 5. Water level readings have been made in test holes (as described in the Report), monitoring wells and piezometers, at the specified times and under the stated conditions. These data have been reviewed and interpretations have been made in this Report. Fluctuations in the groundwater and piezometer levels, however, occur due to temporal or spatial variations in areal recharge rates, soil heterogeneities, reservoir and tailwater levels, the presence of subsurface utilities, and/or natural or artificially induced perturbations.

#### GENERAL

- 6. The observations described in this report were made under the conditions stated therein. The conclusions presented were based solely upon the services described therein, and not on scientific tasks or procedures beyond the scope of described services or the time and budgetary constraints imposed by the Client.
- 7. In preparing this report, GZA relied on certain information provided by the Client, state and local officials, and other parties referenced therein available to GZA at the time of the evaluation. GZA did not attempt to independently verify the accuracy or completeness of all information reviewed or received during the course of this evaluation.
- 8. Any GZA hydrologic analysis presented herein is for the rainfall volumes and distributions stated herein. For storm conditions other than those analyzed, the response of the site's spillway, impoundment, and drainage network has not been evaluated.



- 9. Observations were made of the site and of structures on the site as indicated within the report. Where access to portions of the structure or site, or to structures on the site was unavailable or limited, GZA renders no opinion as to the condition of that portion of the site or structure. In particular, it is noted that water levels in the impoundment and elsewhere and/or flow over the spillway may have limited GZA's ability to make observations of underwater portions of the structure. Excessive vegetation, when present, also inhibits observations.
- 10. In reviewing this Report, it should be realized that the reported condition of the dam is based on observations of field conditions during the course of this study along with data made available to GZA. It is important to note that the condition of a dam depends on numerous and constantly changing internal and external conditions, and is evolutionary in nature. It would be incorrect to assume that the present condition of the dam will continue to represent the condition of the dam at some point in the future. Only through continued inspection and care can there be any chance that unsafe conditions be detected.

#### COMPLIANCE WITH CODES AND REGULATIONS

- 11. We used reasonable care in identifying and interpreting applicable codes and regulations. These codes and regulations are subject to various, and possibly contradictory, interpretations. Compliance with codes and regulations by other parties is beyond our control.
- 12. This scope of work does not include an assessment of the need for fences, gates, no-trespassing signs, repairs to existing fences and railings and other items which may be needed to minimize trespass and provide greater security for the facility and safety to the public. An evaluation of the project for compliance with OSHA rules and regulations is also excluded.

#### **COST ESTIMATES**

13. Unless otherwise stated, our cost estimates are for comparative, or general planning purposes. These estimates may involve approximate quantity evaluations and may not be sufficiently accurate to develop construction bids, or to predict the actual cost of work addressed in this Report. Further, since we have no control over the labor and material costs required to plan and execute the anticipated work, our estimates were made using our experience and readily available information. Actual costs may vary over time and could be significantly more, or less, than stated in the Report.

#### ADDITIONAL SERVICES

14. It is recommended that GZA be retained to provide services during any future: site observations, explorations, evaluations, design, implementation activities, construction and/or implementation of remedial measures recommended in this Report. This will allow us the opportunity to: i) observe conditions and compliance with our design concepts and opinions; ii) allow for changes in the event that conditions are other than anticipated; iii) provide modifications to our design; and iv) assess the consequences of changes in technologies and/or regulations.


**APPENDIX B – 2004 TEST BOING LOGS** 

|               |                     |                                        |               |                    |             | ×1.                 |                  | Soil Sampling Log                                                                                                                                                                       |                                                               |            |            |            |   |
|---------------|---------------------|----------------------------------------|---------------|--------------------|-------------|---------------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|------------|------------|------------|---|
| Date Star     | rted 5-3-04         |                                        |               |                    |             | -                   |                  | · ·                                                                                                                                                                                     | Sheet                                                         | 1          | Of         | 1          |   |
| Date Fini     | ish 5-3-04          |                                        | F==           |                    | ]           |                     |                  |                                                                                                                                                                                         | Proj. No                                                      |            |            |            |   |
| Weight C      | Of Hammer           | $\leq$                                 | 40            |                    | 300         | _                   | GLA              | GEREDRILLING                                                                                                                                                                            | Location Mansfield RdM                                        | limor      | Lk Da      | un         |   |
| Hamm          | ier Fall            | 30'                                    |               | 24"                |             | _                   |                  | 78 Golden St.                                                                                                                                                                           | Storrs, CT                                                    |            |            |            |   |
| Gr            | ound Water C        | bservat                                | ions          |                    |             |                     | Ph               | Meriden, CT 06450<br>one/Fax 860-645-1304                                                                                                                                               |                                                               |            |            |            | _ |
| Date          | Time                |                                        | Dent          | h                  |             | [                   | LENARI           | FINGINEERING INC                                                                                                                                                                        | Offset                                                        |            |            |            |   |
|               | ,                   |                                        |               |                    |             |                     |                  | P.O. Box 580                                                                                                                                                                            | Ground Elevation                                              | ·          |            | ,          |   |
|               |                     |                                        |               |                    |             |                     |                  | P.O. DOX 380                                                                                                                                                                            | Hole No. H                                                    | 3-3        |            | ·          |   |
| Sampler       | O.D. 2"             | 1.D.                                   |               | 13/                | 8"          |                     | ن<br>            | 10175, C1 00208                                                                                                                                                                         | Casing Sam                                                    | oler       | Co<br>Ba   | re<br>rrel |   |
| Type Of       | Rig Truck           | Mount                                  | ted Rig       | g - Cì             | ME-75       | _                   |                  |                                                                                                                                                                                         | Type HSA S                                                    | 0"<br>     | • •        |            |   |
|               |                     |                                        |               |                    |             |                     |                  |                                                                                                                                                                                         | Size 1.D. 4 1/4" 1 3                                          | /8"        | . <u>.</u> |            |   |
| Dept<br>Below | Sample              | Type                                   | BI            | lows Pe<br>In Sanı | r 6*<br>ple | Density             | Profile          | Field Identification                                                                                                                                                                    | OfSoils                                                       |            | Sample     |            |   |
| Surface       | Depths<br>Elev. Ft. | Sample                                 | From<br>0-6   | 5-12               | Γο<br>12-18 | Consist<br>Moisture | Depth<br>Elev,   | Remarks                                                                                                                                                                                 |                                                               | No.        | Pen        | Rec        | 1 |
|               |                     |                                        |               | 1                  |             |                     |                  | 3" Asphalt.                                                                                                                                                                             |                                                               |            |            |            |   |
|               |                     |                                        |               |                    |             |                     |                  | Auger to refusal at 4.0'                                                                                                                                                                |                                                               |            | <u> </u>   |            | - |
|               | 4.0-4' 11"          | SS                                     | 35            | 100/               | 4"          |                     |                  | Fractured rock.                                                                                                                                                                         |                                                               | 1-         | 11"        | 8"         | _ |
|               |                     |                                        |               |                    |             |                     |                  | Auger to 5.0' through boulder. Rock in t                                                                                                                                                | ip.                                                           |            |            | <u> </u>   | _ |
|               | 5-                  | SS                                     | 100/          | 0"                 |             |                     |                  | Auger through boulder to 10.0'                                                                                                                                                          |                                                               | 2          |            |            | _ |
|               |                     |                                        | -             |                    |             |                     |                  |                                                                                                                                                                                         |                                                               |            |            |            | _ |
|               | 10-12               | SS                                     | 8             | 9                  | 13          |                     |                  | Green brown very fine to fine sand trace                                                                                                                                                | medium-coarse sand                                            | 3          | 24"        | 16"        |   |
|               |                     |                                        | ļ             | <u> </u>           | 13          |                     |                  | occasional fractured cobble, little silt. B                                                                                                                                             | ottom 2" - brown silty fine sand.                             |            |            |            |   |
|               |                     |                                        |               |                    |             |                     |                  |                                                                                                                                                                                         |                                                               |            |            |            | - |
|               |                     |                                        |               |                    |             |                     |                  | Roller bit hole to 19.0'                                                                                                                                                                |                                                               |            | 5.0        | 52"        |   |
|               |                     |                                        |               |                    |             |                     |                  | Core from 19-24'.<br>Gray white rock,                                                                                                                                                   |                                                               | <u> </u>   |            |            |   |
|               |                     |                                        |               |                    |             | ••                  |                  |                                                                                                                                                                                         |                                                               |            |            |            |   |
| •             |                     |                                        |               |                    |             |                     | Depth:           | Time required:                                                                                                                                                                          |                                                               |            |            |            |   |
|               |                     |                                        |               | <u> </u>           |             |                     | 19-20'<br>20-21' | 6 minutes<br>6 minutes                                                                                                                                                                  |                                                               |            |            |            | _ |
| i             |                     |                                        |               |                    |             |                     | 21-22'           | 7 minutes                                                                                                                                                                               |                                                               |            |            | <u> </u>   |   |
| l             |                     |                                        |               |                    |             |                     | 22-23            | 6 minutes                                                                                                                                                                               |                                                               |            |            |            | _ |
|               |                     |                                        |               |                    |             |                     |                  |                                                                                                                                                                                         |                                                               | <u> </u>   |            |            |   |
|               |                     |                                        |               |                    |             |                     |                  |                                                                                                                                                                                         |                                                               |            |            |            |   |
|               |                     |                                        |               |                    |             |                     |                  |                                                                                                                                                                                         |                                                               |            |            |            |   |
| •             |                     | · · · ····                             |               |                    |             |                     | 04.03            | DOD ant of UN familiar Well well                                                                                                                                                        |                                                               |            |            |            | _ |
|               |                     |                                        |               |                    |             |                     | 24.0             | B.O.B., set a 2" Monitoring well using:                                                                                                                                                 |                                                               |            |            |            |   |
|               |                     |                                        |               |                    |             |                     |                  | Threaded Plug                                                                                                                                                                           |                                                               |            |            |            |   |
|               |                     |                                        |               |                    |             |                     |                  | 0' Screen, .010 slot<br>9' Riser                                                                                                                                                        |                                                               |            |            |            |   |
|               |                     |                                        |               |                    |             |                     |                  | 300 lbs. Sand                                                                                                                                                                           |                                                               |            | ·[         |            |   |
|               |                     | ······································ |               |                    |             |                     |                  | Expandable Gripper                                                                                                                                                                      |                                                               |            |            | ļ          |   |
|               |                     |                                        |               | ·                  |             |                     |                  | Lock<br>8" Road Box                                                                                                                                                                     |                                                               |            |            |            |   |
|               |                     |                                        | <u> </u>      |                    |             |                     |                  | 160 lbs. Cement Mix                                                                                                                                                                     |                                                               |            |            | <u> </u>   | _ |
|               | ·                   |                                        |               |                    |             |                     |                  |                                                                                                                                                                                         |                                                               |            |            | 1          |   |
|               | lar Tim             | Sabo                                   |               |                    |             |                     | Properties       | Impart 0.168/ Julia = 10.202/ 20.026/                                                                                                                                                   | 5 500/                                                        |            |            | 1          |   |
|               | stant: L<br>Engine  | avelle Tat<br>cer: Bry                 | um<br>an Tuck | er                 |             |                     |                  | a autor = 0.10%, marc = 10.20%, some = 20.35%, and = 3<br>le Type: Cohesionless Density<br>fored W = Washed O-10 Loose<br>Split Spoon 10-30 Med Comp.<br>Undisturbed Piston 30-50 Dense | Total Footage:<br>Earth Boring <sup>24.0</sup><br>Rock Coring | Ft.<br>Ft. |            |            |   |

|                   |                  |                                       |              |             |                                       |             |               |                    | Soil Sampling Log                                                                                               |                                     |          |                                               |          |          |
|-------------------|------------------|---------------------------------------|--------------|-------------|---------------------------------------|-------------|---------------|--------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------------|----------|-----------------------------------------------|----------|----------|
|                   | Date Star        | rted 5-3-04                           |              |             |                                       | - <u></u>   |               |                    | ( )                                                                                                             | Sheet                               | 1        | Of                                            | 1        |          |
|                   | Date Fin         | ish 5-3-04                            |              | F           |                                       | <b></b>     |               | 1990 M 1991        |                                                                                                                 | Proj. No <u>.</u>                   |          |                                               |          |          |
|                   | Weight C         | Of Hammer                             | $\ge$        | 140         |                                       | 300         |               | GLA                | <b>CIER</b> ORILLING                                                                                            | Location Mansfield Rd               | Mirror   | Lk D                                          | am       |          |
| ÷                 | Hamn             | ier Fall                              | 30'          | [           | 24"                                   |             |               |                    | A A A A A A<br>78 Golden St.                                                                                    | Storrs, CT                          |          |                                               |          |          |
|                   | Gr               | ound Water (                          | Theerval     | tions       |                                       |             |               | թե                 | Meriden, CT 06450                                                                                               |                                     |          |                                               |          |          |
|                   | Data             | Time                                  | 5050140      | Dan         | "                                     |             | ſ             | <u> </u>           |                                                                                                                 | Offset                              |          |                                               |          |          |
| _                 |                  |                                       |              | Deb         |                                       |             |               | LEINAKL            | DENGINGERING, INC.                                                                                              | Ground Elevation                    |          |                                               |          |          |
|                   |                  |                                       |              |             |                                       |             |               |                    | P.O. Box 580                                                                                                    | Hole No. Mw                         | ~4 / F   | 3-4                                           |          |          |
|                   | Sampler          | O.D. 2"                               | LD.          |             | 13/                                   | /8"         |               | S                  | torrs, CT 06268                                                                                                 | Casing San                          | nler     | Co                                            | ore      | <u> </u> |
|                   | Type Of          | Rig Truck                             | . Moun       | ted R       | ig - Ci                               | ME-75       | 5             |                    |                                                                                                                 | Type HSA                            | SS       |                                               |          | <u> </u> |
|                   |                  |                                       |              |             |                                       |             |               | <u> </u>           | · · · _ · _ · _ · _ · _ · _ ·                                                                                   | Size I.D. 4 1/4" 1                  | 3/8"     |                                               |          |          |
| <b>B</b> (2007)23 | Dept.            | Sample                                | Type         |             | lows Pe<br>On Sam                     | x 6"<br>ple | Density       | Profile            | Field Identification                                                                                            | Of Soile                            |          |                                               |          | DIG      |
|                   | Below<br>Surface | No.<br>Depths                         | Öf<br>Sample | From        |                                       | Го          | Or<br>Consist | Change<br>Depth    | Remarks                                                                                                         |                                     | <u> </u> | зация<br>[                                    | L        | <u> </u> |
|                   |                  | FI.                                   |              | 0-0         | 0-12                                  | 12-18       | Motsture      | Elev.              | τα προσφαρία μα ματοπολογία ματροποιού το ποιοιού το το τη το τη μετατοποίο το |                                     | N0.      | Pen                                           | Rec      |          |
|                   |                  |                                       | <br>         |             | <u> </u>                              |             |               |                    | Auger to refusal at 4.0'                                                                                        |                                     |          | <u> </u>                                      | 1        | 1        |
|                   |                  | 5-7                                   | SS           | 3           | 5                                     | 8           | Med. Comp.    | Тор б"             | Tan brown very fine sand and silt.                                                                              |                                     |          | 24n-                                          | 120      | -        |
|                   |                  |                                       | Í            |             |                                       | 5           |               | Bottom 8"          | Dark brown fine sand, some silt, trace fra                                                                      | actured cobble.                     | Ê        |                                               | <u> </u> |          |
|                   |                  | 10-12                                 | 88           | 0           | 16                                    | 18          | Mad Comp      | Top 64             | Proventing and and all trace exercises                                                                          |                                     |          |                                               |          | -        |
|                   |                  |                                       |              | Ĺ           |                                       | 22          | Moist         | Bottom 12"         | Dark grayish medium-coarse sand, trace                                                                          | silt, trace fractured cobble.       | 2        | 24"                                           | 18"      |          |
|                   |                  |                                       |              |             |                                       |             |               |                    |                                                                                                                 |                                     |          | <u> </u>                                      |          | ]        |
|                   |                  |                                       |              |             |                                       |             |               |                    | Drill cuttings from 12-15' - Dark brown t saturated.                                                            | o black very fine silty sand.       | ·        |                                               |          |          |
| 1                 |                  |                                       |              |             |                                       |             |               |                    |                                                                                                                 |                                     |          |                                               |          | -        |
| ĺ                 |                  | 15-17                                 | SS           | 3           | 3                                     | 4           | Loose<br>Wet  |                    | Gray brown fine-medium sand, trace coa                                                                          | rse sand, little silt.              | 3        | 24"                                           | 6"       |          |
| ,                 |                  |                                       | ······       |             |                                       |             |               |                    |                                                                                                                 |                                     |          | <u> </u>                                      |          | _        |
| 1                 | I                |                                       |              |             |                                       | ·           |               |                    | Auger to refusal at 17.0'.                                                                                      |                                     |          | <u> .                                    </u> |          |          |
| •                 | Ì                |                                       |              | <u> </u>    |                                       |             |               |                    |                                                                                                                 |                                     |          |                                               | <u> </u> |          |
|                   | 1                |                                       |              |             |                                       | ·           |               |                    |                                                                                                                 |                                     |          |                                               |          |          |
|                   |                  |                                       |              |             | · · · · · · · · · · · · · · · · · · · |             |               |                    |                                                                                                                 |                                     |          |                                               |          | -        |
|                   |                  |                                       |              |             |                                       |             |               |                    |                                                                                                                 |                                     |          | · ·                                           | [        | 1        |
|                   |                  |                                       | ,,           |             |                                       |             |               |                    |                                                                                                                 |                                     |          |                                               | [        |          |
|                   |                  |                                       | · ·          |             |                                       |             |               |                    |                                                                                                                 |                                     |          |                                               |          | 1        |
|                   |                  |                                       |              | •           |                                       | ·           |               |                    |                                                                                                                 |                                     |          |                                               |          |          |
|                   |                  |                                       |              | <br>        |                                       | ·           |               | 1/2/01             |                                                                                                                 |                                     |          |                                               |          | -        |
|                   |                  |                                       |              |             |                                       |             |               | 17.0               | D.O.D., set a 2" Monitoring Well to 16'3"                                                                       | using:                              |          |                                               |          | -        |
|                   |                  | · · · · · · · · · · · · · · · · · · · |              |             | ,                                     |             |               |                    | <br>Threaded Plug                                                                                               |                                     |          |                                               |          | ]        |
|                   |                  |                                       |              |             |                                       |             |               |                    | 10' Screen, .010 slot<br>6'3" Riser                                                                             |                                     |          |                                               |          | 1        |
|                   |                  |                                       |              |             |                                       |             |               |                    | 300 lbs, Sand<br>50 lbs, Bentonite Chins                                                                        |                                     |          |                                               |          | -        |
|                   |                  |                                       |              |             |                                       |             |               |                    | Expandable Gripper                                                                                              |                                     |          |                                               |          |          |
|                   |                  |                                       |              |             |                                       |             |               |                    | 8" Road Box                                                                                                     |                                     |          |                                               | ļ        |          |
|                   |                  |                                       |              |             |                                       |             |               |                    | ov tos. Cettient WIX                                                                                            |                                     |          |                                               | <u> </u> | <u> </u> |
|                   |                  |                                       |              |             |                                       |             |               |                    |                                                                                                                 |                                     |          |                                               |          | -        |
|                   |                  | <sup>1</sup> er: Time                 | Sabo         | Ì           |                                       |             |               | Proportions used t | raco= 0.10%, livle = 10.20%, some = 20 35%, and = 35                                                            | 50%                                 |          | L                                             |          | 1        |
|                   |                  | tant; La<br>Engine                    | er: Brya     | n<br>n Tuck | er                                    |             |               | Saniple<br>C = Ce  | e Type: Cohesionless Density<br>red W = Washed 0-10 Loose                                                       | Total Footage:<br>Earth Boring 17.0 | Ft       |                                               |          |          |
|                   |                  |                                       | _            |             |                                       |             |               | - 33-75<br>UP=L    | Indisturbed Piston 30-50 Dense                                                                                  | Rock Coring                         | Ft.      |                                               |          |          |

| Date Star<br>Date Fini | ed 5-7-03                              |                         |                |                 | <br>            | · •           | ,<br><i>P</i> i 84               |                                                                                                                               | She<br>Proj                                  | et<br>j. No <u></u> | 1          | Oſ       | 1          |    |
|------------------------|----------------------------------------|-------------------------|----------------|-----------------|-----------------|---------------|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|---------------------|------------|----------|------------|----|
| Weight O               | f Hammer -                             | $\leq 1$                | 40             |                 | 300             |               | GPRAC                            | SIEN & DRILLING                                                                                                               | Location Mansfield                           | i RdM               | lirror     | Lk Da    | m          |    |
| Hamm                   | er Fall                                | 30'                     |                | 24"             |                 | ·             |                                  | 78 Golden St.                                                                                                                 | Storrs, C                                    | Г                   |            |          |            |    |
| Gre                    | und Water (                            | Observat                | ions           |                 |                 |               | )<br>Pho                         | Meriden, CT 06450<br>one/Fax 860-645-1304                                                                                     |                                              |                     |            |          |            |    |
| Date                   | Time                                   | •                       | Dept           | ı               |                 |               | LENARD                           | ENGINEERING, INC.                                                                                                             | Offset                                       |                     |            |          |            |    |
|                        | ······                                 | سمو مسدون               |                | ·               |                 |               |                                  | P.O. Box 580                                                                                                                  | Ground Elevation                             |                     |            |          |            |    |
|                        |                                        |                         |                |                 |                 |               |                                  | 1,0, D0x 300                                                                                                                  | Hole No.                                     | <u>MW -</u>         | 6/E        | 3-6      |            |    |
| Sampler (              | ).D. 2"                                | <u>l.D.</u>             |                | 1 3/            | 8 <sup>11</sup> |               | د<br>                            | 10ms, C1 00208                                                                                                                | Casing                                       | Samg                | ler        | Co<br>Ba | re<br>rrel |    |
| Type Of I              | ig Truck                               | . Mount                 | ed Rig         | 3 - CN          | AE-75           |               |                                  |                                                                                                                               | Туре                                         | 0<br>               |            |          |            | •  |
|                        |                                        |                         |                |                 |                 |               |                                  |                                                                                                                               | Size I.D. 4 1/4"                             |                     | /8"        |          | ,          |    |
| Dept.                  | Sample                                 | Туре                    | BI             | ows Pe<br>n Sam | r 6°<br>ble     | Density       | Profile                          | Field Identification                                                                                                          | Of Soils                                     | <u></u>             |            | Sample   |            | PI |
| Below<br>Surface       | No.<br>Depths                          | Of<br>Swiple            | From           | 1               | 0               | Or<br>Consist | Change<br>Depth                  | Remarks                                                                                                                       |                                              | •                   | No         | Pen      | Rec        | 1  |
|                        | Ellev. Ft.                             | ļ                       | 0-6            | Б- <u>12</u>    | 12-18           | Moisture      | Elev,                            |                                                                                                                               |                                              |                     |            |          |            |    |
|                        |                                        | 1                       |                |                 |                 | ( s           |                                  |                                                                                                                               |                                              | ۰.                  |            |          |            | -  |
|                        | 5.7                                    |                         | 4              | 6               | 8               | Med. Comp.    | Ton 6"                           | Brown fine sand and silt.                                                                                                     |                                              |                     |            | 24"      | 20"        | 1  |
|                        |                                        |                         |                |                 | 8               |               | Next 4"                          | Brown fine dense sand, little fine-medium                                                                                     | m gravel, trace silt.                        | 111111              |            | <u> </u> | -          | -  |
|                        |                                        |                         |                |                 |                 |               | Dottoni 10                       | gravel, fractured cobble throughout.                                                                                          | arso sailo, naco mio-mou                     |                     |            |          | <u></u>    |    |
|                        |                                        |                         |                |                 |                 | ·             |                                  |                                                                                                                               |                                              |                     |            | <u> </u> | <u>}</u>   |    |
|                        |                                        |                         |                |                 |                 |               | · ·                              |                                                                                                                               |                                              | •                   |            | Ì        |            | 1  |
|                        | 10-12                                  | SS                      | 3              | 3               | 3               | Loose         | Top 3"<br>Bottom 5"              | Brown fine sand and silt.<br>Black loose fine-medium and fine-mediu                                                           | ım gravel                                    |                     | 2          | 24"      | 811-       | 1  |
|                        |                                        | <u> </u>                |                |                 |                 |               | Lonom                            |                                                                                                                               | Ereton                                       |                     |            | <u> </u> | <u> </u>   | ~  |
|                        | 15-17                                  | SS                      | 11             | 21              | 29              | Med. Comp.    | -                                | Gray brown fine sand, trace medium san                                                                                        | d, trace fine-medium gra                     | vel.                | 3          | 24"      | -3"        | +  |
|                        | 9.et                                   |                         |                |                 | 24              | Wet           |                                  |                                                                                                                               |                                              |                     |            |          |            |    |
| \                      |                                        |                         | <u> </u>       |                 |                 |               |                                  | Auger to refusal at 20.0.                                                                                                     |                                              |                     |            |          |            | 1  |
|                        |                                        |                         |                |                 |                 | ·             |                                  |                                                                                                                               |                                              |                     |            |          |            |    |
|                        |                                        |                         |                |                 |                 |               |                                  |                                                                                                                               |                                              |                     |            | -        |            | -  |
| i<br>V                 | }                                      |                         |                |                 |                 |               | · :                              | •                                                                                                                             |                                              |                     |            |          |            | _  |
| ļ                      |                                        | <u>.</u>                |                |                 |                 |               | ,                                |                                                                                                                               |                                              |                     |            | -        |            |    |
| \$                     |                                        |                         |                |                 | [               |               |                                  |                                                                                                                               |                                              |                     |            |          |            |    |
|                        |                                        |                         |                |                 |                 |               |                                  |                                                                                                                               |                                              |                     |            |          |            |    |
| Ì                      |                                        |                         |                |                 |                 |               |                                  |                                                                                                                               |                                              |                     |            | <u> </u> | 1          | +  |
|                        |                                        |                         |                |                 |                 |               |                                  |                                                                                                                               |                                              |                     |            | -        |            |    |
| ,<br>I                 |                                        |                         |                |                 |                 |               | 20.0'                            | B.O.B., set a 2" Monitoring Well to 20.0                                                                                      | )' using:                                    |                     |            | -        |            |    |
|                        |                                        |                         |                |                 |                 |               |                                  |                                                                                                                               |                                              |                     |            |          |            | _  |
|                        |                                        |                         |                |                 |                 |               |                                  | Threaded Plug                                                                                                                 |                                              |                     |            |          | -          | _  |
|                        |                                        | ļ                       |                |                 |                 |               |                                  | 6'3" Riser                                                                                                                    |                                              |                     |            |          |            |    |
|                        | •                                      |                         |                |                 |                 |               |                                  | 50 lbs. Bentonite Chips                                                                                                       |                                              |                     |            |          |            | -  |
|                        |                                        |                         |                |                 |                 |               |                                  | Expandable Gripper<br>Lock                                                                                                    |                                              |                     |            | -        |            |    |
|                        | ······································ |                         |                |                 |                 |               |                                  | 8" Road Box<br>80 lbs. Cement Mix                                                                                             |                                              |                     |            | 1        |            |    |
|                        | ·                                      |                         |                |                 | ļ               |               |                                  | DO 1001 Soutions Intra                                                                                                        |                                              |                     |            |          | 1          | 1  |
|                        | ·                                      |                         | <u> </u>       |                 |                 |               |                                  |                                                                                                                               | ,                                            | 4.                  | <u> </u>   |          |            | _  |
|                        | er: Tin                                | ie Sabo                 |                | مندر و رو       | 1]              |               | Proportions used                 | trace= 0.10%, little = 10.20%, some = 20.35%, and = 5                                                                         | 35.50%                                       | . • <b>`~</b> .•    |            |          |            |    |
|                        | (tant:<br>Engir                        | Lavelle Ta<br>leer: Bry | tum<br>an Tuck | er              |                 |               | - Samp<br>- C = C<br>- SS = UP = | le Type: Cohesiotiless Density<br>ored W = Washed 0-10 Loose<br>Split Spoon 10-30 Med Comp.<br>Undisturbed Piston 20-50 Dense | Total Footage<br>Earth Boring<br>Rock Coring | ;:<br>20.0          | Ft.<br>Ft. |          |            |    |

| Ate Fin       | ish 10-8-0         | 4<br>           | F        |               | <br>]  |                     |                                  |                                                                                                                          | . She                         | eet <sup>1</sup> | _Of          | 1                |       |
|---------------|--------------------|-----------------|----------|---------------|--------|---------------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------|-------------------------------|------------------|--------------|------------------|-------|
| Weight (      | of Hammor          | $ \ge $         | 14d      | <b>.</b>      | 300    |                     | gla                              | CIEREDRILLING                                                                                                            | Location Mansfield            | Rd. (Mirro       | r Lake       | a .:             | ,     |
| Hamn          | ier Fall           | 301             |          | 24            | a      |                     |                                  |                                                                                                                          | Location Storm (21            | ,                |              |                  |       |
| Gr            | ound Weter         |                 |          | -   247       | ,      |                     |                                  | Durham, CT 06422                                                                                                         |                               | ·                |              |                  | •     |
| 01            | ound water         | Observa         | tions    |               |        |                     | Pł                               | 10ne/Fax 860-645-1304                                                                                                    | Officet                       |                  |              |                  |       |
| late          | Time               |                 | Dep      | th            |        |                     | LENARI                           | PENGINEERING, INC.                                                                                                       | Oriset                        |                  |              |                  |       |
|               |                    |                 |          |               |        |                     |                                  | P.O. Box 580                                                                                                             | Ground Elevation              |                  |              |                  |       |
|               | on 2*              |                 |          | 13/           | QН     |                     | S                                | torrs, CT 06268                                                                                                          | Hole No.                      | B-7              |              |                  |       |
| ype Of ]      | D.D. ~<br>Rig Trac | I.D.<br>k Mount | ed Rig   | 1 3/<br>3: CM | E-850  |                     |                                  |                                                                                                                          | Type Casing HSA               | Sampler<br>SS    | B:           | arrel            |       |
|               | ,                  |                 | T E      | lows P        | er 6'  |                     | ana ana amin'ny Germania.        |                                                                                                                          | Size I.D. 4 1/4"              | 1 3/8"           |              |                  | ·,    |
| Rept.<br>elow | Sample<br>No.      | Type<br>Of      | From     | On Sar        | ple    | Density<br>Or       | Profile<br>Change                | Field Identification                                                                                                     | Df Soils                      |                  | Sampl        | ¢.               | -<br> |
| 12CC          | Elev. Ft.          | Sample          | 0-6      | 6-12          | 12-18  | Consist<br>Moisture | Depth<br>Elev.                   | . Remarks                                                                                                                |                               | No               | Den          | Pag              | ╡.    |
|               | 0-2                | 88              | 2        | 2             | 2 5    | Loose               |                                  | Dark brown topsoil (organics).                                                                                           |                               |                  | -24-         | 6"               | -     |
|               |                    |                 | 1        |               |        |                     |                                  | · · ·                                                                                                                    |                               |                  |              |                  | 1     |
|               | 5-7                | ss              | 3        | 8             | 14     | Med. Comp.          | Top 3*                           | Dark brown fine sand and silt.                                                                                           |                               | 2                | 241          | 241              | -     |
|               |                    |                 |          |               | 8      | Moist               | Bottom 21"                       | Tan fine sand, trace medium sand, trace si                                                                               | lt, trace fine gravel.        | <u> </u>         | 1-           | <u> </u>         | +     |
|               | 10-12              | ss              | 7        | 7             | 14     | Med. Comn           |                                  | Grav tan fine cand and all tongs made                                                                                    | and also to to to to          |                  |              | ļ                | -     |
| •             |                    | 1               |          | <u> </u>      | 13     | Wet                 |                                  | black weathered rock (cobble).                                                                                           | and, piece dark grey to       | 3-               | 24"-         | 116 <sup>H</sup> | +     |
|               |                    |                 | <u> </u> |               |        |                     |                                  |                                                                                                                          |                               |                  |              |                  | -     |
|               | 15-15,8            | SS              | 1        | 100/          | 8"<br> | Dense<br>Wet        |                                  | Tan fine sand, trace coarse sand to fine gra                                                                             | vel, rock in tip.             | 4                | - <u>9</u> 9 | <u>9</u> "       | ╀     |
|               |                    |                 |          |               |        |                     | 15.01                            |                                                                                                                          |                               |                  |              |                  | 1     |
|               |                    |                 |          |               |        |                     | 15.0                             | D.O.D., refusal: set a 2" PVC Monitoring                                                                                 | Vell using:                   |                  |              |                  | 1     |
|               |                    |                 |          |               |        |                     | 1                                | Threaded Plug                                                                                                            |                               |                  |              |                  | ┝     |
|               |                    |                 |          |               |        |                     |                                  | 0' Screen, .010 slot                                                                                                     | ٢                             |                  |              |                  |       |
|               |                    |                 |          |               |        |                     |                                  | 5' Riser                                                                                                                 |                               |                  |              |                  | +     |
|               |                    |                 |          |               |        |                     | }                                | 300 lbs Sand                                                                                                             |                               |                  |              |                  | -     |
|               |                    |                 |          |               |        |                     | }                                | 50 lbs Bentonite China                                                                                                   |                               |                  |              |                  | ╞     |
|               |                    |                 |          |               |        |                     |                                  |                                                                                                                          |                               |                  |              |                  | -     |
|               |                    |                 |          |               |        |                     |                                  | expandatic Gripper                                                                                                       |                               |                  |              |                  | 1     |
|               |                    |                 |          |               |        |                     |                                  | Lock .                                                                                                                   |                               |                  |              |                  | ┢     |
| -             |                    |                 |          |               |        |                     |                                  | s" Road Box                                                                                                              |                               |                  |              |                  |       |
| ļ             |                    |                 |          |               |        |                     |                                  | bags Concrete Mix                                                                                                        |                               |                  |              |                  | F     |
| Ļ             |                    |                 |          | _             |        |                     |                                  |                                                                                                                          |                               |                  |              |                  | 1     |
| ŀ             |                    |                 |          |               |        |                     |                                  |                                                                                                                          |                               |                  |              |                  | ╞     |
| F             |                    |                 |          |               |        |                     |                                  |                                                                                                                          |                               |                  |              |                  |       |
| ļ             |                    |                 |          |               |        |                     |                                  |                                                                                                                          |                               |                  |              |                  |       |
| F             |                    |                 |          |               |        |                     |                                  |                                                                                                                          |                               |                  |              |                  | ┢     |
| ŀ             |                    | ·               | _        |               |        |                     |                                  |                                                                                                                          |                               |                  |              |                  |       |
| F             |                    |                 |          |               |        |                     |                                  |                                                                                                                          |                               |                  |              |                  |       |
| L L           |                    |                 |          |               |        | ·4                  |                                  |                                                                                                                          | ;                             |                  |              |                  |       |
| -             |                    |                 |          |               |        |                     |                                  | · · · ·                                                                                                                  |                               |                  |              |                  |       |
|               |                    | -               |          |               |        |                     |                                  |                                                                                                                          |                               |                  |              |                  | 1     |
| Ď             | riller: The S      | abo J           | /Ram     | Rumer         |        | P                   | roportions used tra              | cc= 0.10%, little = 10.20%, some = 20.35%, and = 35.50                                                                   | 8%                            |                  |              |                  |       |
|               | oils Engine        | er: Bryan       |          |               |        |                     | Sample :<br>C = Core<br>SS = Spl | Type:         Cohesionless Density           d W = Washed         0-10 Loose           it Spoon         10-30 Med. Comp. | Total Footage<br>Earth Boring | Ft.              |              |                  |       |



**APPENDIX C – GZA TEST BORING LOGS** 

|                                      |                                                                                                                                                                                                                                                                                                                         |                                                                             |                                                           |                                                                                      |                                                              |                                                                    |                                                                                             |                                                                                       | TEST BORIN                                                                                                                                                                                                         | G LOG                                                                                     |                                        |                                                      |                                                                                                         |                                                    |                                                       |                                           |
|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------|------------------------------------------------------|---------------------------------------------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------|-------------------------------------------|
| C                                    | 77                                                                                                                                                                                                                                                                                                                      | GZ<br>Geo<br>Engi                                                           | A<br>DEn<br>ineer                                         | <b>viron</b><br>rs and Sc                                                            | men<br>cienti:                                               | <b>tal,</b> ]                                                      | nc.                                                                                         |                                                                                       | University of Conne<br>Mirror Lake Da<br>Storrs, Connecti                                                                                                                                                          | ecticut<br>m<br>cut                                                                       |                                        |                                                      | EXPLORATION<br>SHEET:<br>PROJECT NO:<br>REVIEWED BY                                                     | NO.: G<br>1 of 2<br>05.00461<br>': J. Davis        | Z-1<br>161.07<br>s                                    |                                           |
| Lo<br>Dr<br>Fo                       | ogged<br>illing o<br>premar                                                                                                                                                                                                                                                                                             | By: S.<br>Co.: Se<br>n: M                                                   | . De/<br>eabo<br>. Gly                                    | Angelis<br>ard Drilli<br>ynn                                                         | ng                                                           |                                                                    |                                                                                             | Type of<br>Rig Mo<br>Drilling                                                         | F <b>Rig:</b> ATV<br>del: D-50T<br>J <b>Method:</b> Rotary Wash                                                                                                                                                    | Boring Lo<br>Ground S<br>Final Bori<br>Date Star                                          | ocat<br>Surfa<br>ing<br>t - F          | tion: S<br>ace Ele<br>Depth<br>Finish:               | See Plan<br>ev. (ft.): 588<br>(ft.): 25.5<br>1/11/2021 - 1/11                                           | /2021                                              | H. Dat<br>V. Dat                                      | um: NAD83<br>um: NAVD88                   |
| Ha                                   | ammer                                                                                                                                                                                                                                                                                                                   | · Type:                                                                     | Aut                                                       | tomatic I                                                                            | Hamr                                                         | ner                                                                |                                                                                             | Sample                                                                                | r Type: SS                                                                                                                                                                                                         | -                                                                                         |                                        | Data                                                 | Groundw                                                                                                 | ater Dept                                          | h (ft.)                                               | Stab Time                                 |
| Ha<br>Ha                             | ammer<br>ammer                                                                                                                                                                                                                                                                                                          | ·Weigl<br>·Fall (i                                                          | nt (ll<br>n.):                                            | <b>b.)</b> : 140                                                                     | )                                                            |                                                                    |                                                                                             | Sample<br>Sample                                                                      | r O.D. (in.): 2.0<br>r Length (in.): 24                                                                                                                                                                            | -                                                                                         | 1/<br>1/                               | 12/202<br>14/202                                     | 1 0800<br>1 0800                                                                                        | 5.85<br>6.95                                       |                                                       | 17 hrs<br>3 days                          |
| A                                    | uger or                                                                                                                                                                                                                                                                                                                 | r Casır                                                                     | ng O                                                      | ).D./I.D L                                                                           | Jia (i                                                       | n.):                                                               | 4                                                                                           | Rock C                                                                                | ore Size: NX                                                                                                                                                                                                       |                                                                                           | 1/                                     | 26/202                                               | 0800                                                                                                    | 7.0                                                |                                                       | 15 days                                   |
| De<br>(f                             | pth Blo<br>t) Cas<br>Cas<br>Blo<br>Cas<br>Cas<br>Cas<br>Cas<br>Blo<br>Cas<br>Blo<br>Cas<br>Blo<br>Cas<br>Blo<br>Cas<br>Blo<br>Cas<br>Blo<br>Cas<br>Blo<br>Cas<br>Blo<br>Cas<br>Blo<br>Cas<br>Cas<br>Blo<br>Cas<br>Cas<br>Blo<br>Cas<br>Cas<br>Blo<br>Cas<br>Cas<br>Cas<br>Cas<br>Cas<br>Cas<br>Cas<br>Cas<br>Cas<br>Cas | sing<br>ows/<br>ore N<br>ate                                                | о.                                                        | Depth<br>(ft.)                                                                       | Samp<br>Pen.<br>(in)                                         | le<br>Rec.<br>(in)                                                 | Blows<br>per 6"                                                                             | SPT<br>Value                                                                          | Sample Description                                                                                                                                                                                                 | on<br>er                                                                                  | Remark                                 | Field<br>Test<br>Data                                | Stratum                                                                                                 | Elev.<br>(ft.)                                     |                                                       |                                           |
|                                      | 1                                                                                                                                                                                                                                                                                                                       | 5 SS                                                                        | S-1                                                       | 0-2                                                                                  | 24                                                           | 9                                                                  | 12 3                                                                                        | _                                                                                     | SS-1 : Top 4": Asphalt                                                                                                                                                                                             |                                                                                           | 1                                      |                                                      | A.3 ASPHALT                                                                                             | 5877                                               |                                                       |                                           |
|                                      | 1<br>  1<br>  1                                                                                                                                                                                                                                                                                                         | 2<br>3 SS                                                                   | 5-2                                                       | 2-4                                                                                  | 24                                                           | 12                                                                 | 2 10<br>12 5<br>3 2                                                                         | 5                                                                                     | SAND, little Silt, trace fin<br>SS-2 : Loose, brown, fine                                                                                                                                                          | e Gravel<br>e to                                                                          |                                        |                                                      | EMBANKMENT FILL                                                                                         | -                                                  |                                                       |                                           |
| 5                                    | 12     3 2     8     coarse SAND and SILT, little fine       18     SS-3     4-6     24     11     5 3       20     12     14     15     SS-3 : Top 7": Dark brown, fine       50+     SS 4     6 7 1     13     0     10                                                                                               |                                                                             |                                                           |                                                                                      |                                                              |                                                                    |                                                                                             |                                                                                       |                                                                                                                                                                                                                    |                                                                                           |                                        |                                                      | 5                                                                                                       | 583.0                                              |                                                       |                                           |
|                                      | - 2                                                                                                                                                                                                                                                                                                                     | 20<br>0+   SS                                                               | 5-4                                                       | 6-7.1                                                                                | 13                                                           | 0                                                                  | 12 14<br>10 23                                                                              | 15                                                                                    | to coarse SAND and SIL<br>fine Gravel, trace Organi                                                                                                                                                                | T, little                                                                                 |                                        |                                                      |                                                                                                         |                                                    | ľ                                                     | —Auger Spoils<br>(0'-11')                 |
|                                      | - 1::<br>- 2::                                                                                                                                                                                                                                                                                                          | 37 C<br>30                                                                  | -1                                                        | 7-8.5                                                                                | 18                                                           | 15                                                                 | 50/1"                                                                                       |                                                                                       | Bottom 4": Grey, fine to SAND and GRAVEL, trac                                                                                                                                                                     | coarse<br>ce Silt                                                                         | 2                                      |                                                      | CORE WALL                                                                                               | -                                                  |                                                       | —2" PVC Riser<br>(0-15')                  |
| 10                                   | - 5<br>) - 3                                                                                                                                                                                                                                                                                                            | 54<br>19 SS                                                                 | 6-5                                                       | 10-12                                                                                | 24                                                           | 0                                                                  | 3 16                                                                                        |                                                                                       | C-1 : Top 6": Hard, sligh<br>weathering, moderately f                                                                                                                                                              | t<br>ractured,                                                                            |                                        |                                                      | <u>9.5</u>                                                                                              | <u>578.5</u>                                       |                                                       |                                           |
|                                      | - 4<br>- 6                                                                                                                                                                                                                                                                                                              | 6<br>3 SS                                                                   | 5-6                                                       | 12-14                                                                                | 24                                                           | 18                                                                 | 13 15<br>17 20                                                                              | 29                                                                                    | fine to medium grained, g<br>GNEISS boulder                                                                                                                                                                        | grey                                                                                      |                                        |                                                      |                                                                                                         | *****                                              |                                                       | Bentonite Chips                           |
|                                      | - 6<br>- 4                                                                                                                                                                                                                                                                                                              | 65<br>10 55                                                                 | 5-7                                                       | 14-16                                                                                | 24                                                           | 11                                                                 | 20 21<br>16 21                                                                              | 40                                                                                    | Bottom 9": Hard, slight<br>weathering, moderately f                                                                                                                                                                | ractured,                                                                                 |                                        |                                                      |                                                                                                         |                                                    |                                                       | (                                         |
| 15                                   | 5 - 3<br>- 3                                                                                                                                                                                                                                                                                                            | 2<br>6                                                                      |                                                           | 16 10                                                                                | 24                                                           | 24                                                                 | 19 15                                                                                       | 40                                                                                    | GRANITE boulder<br>SS-5 : No Recovery                                                                                                                                                                              | Cy                                                                                        |                                        |                                                      |                                                                                                         |                                                    |                                                       |                                           |
|                                      | - 3                                                                                                                                                                                                                                                                                                                     | 3 ac                                                                        | 5-0                                                       | 10-10                                                                                | 24                                                           | 24                                                                 | 14 13                                                                                       | 24                                                                                    | SS-6 : Dense, grey, fine<br>SAND, some fine Gravel                                                                                                                                                                 | to coarse<br>, some                                                                       |                                        |                                                      | GLACIAL TILL                                                                                            |                                                    |                                                       |                                           |
| WF 05:130 AM                         | )                                                                                                                                                                                                                                                                                                                       | 7 SS                                                                        | 5-9                                                       | 18-20                                                                                | 24                                                           | 10                                                                 | 48 37<br>24 19                                                                              | 61                                                                                    | SIIL<br>SS-7 : Dense, grey, fine<br>SAND and fine GRAVEL                                                                                                                                                           | to coarse<br>, some                                                                       |                                        |                                                      |                                                                                                         |                                                    |                                                       | -Filter Sand (13'-25')                    |
| 15/2021 10:3                         | - 4                                                                                                                                                                                                                                                                                                                     | 5 SS                                                                        | -10                                                       | 20-22                                                                                | 24                                                           | 13                                                                 | 21 13<br>13 16                                                                              | 26                                                                                    | Silt<br>SS-8 : Medium dense, gr                                                                                                                                                                                    | rey, fine                                                                                 |                                        |                                                      |                                                                                                         |                                                    |                                                       |                                           |
| 111.GLB 4/                           | - 6<br>- 5                                                                                                                                                                                                                                                                                                              | 51 SS                                                                       | -11                                                       | 22-24                                                                                | 24                                                           | 8                                                                  | 16 14<br>24 26                                                                              | 38                                                                                    | to medium SAND, little fi<br>Gravel, trace Silt<br>SS-9 : Very dense, grey,                                                                                                                                        | ne<br>fine to                                                                             |                                        |                                                      |                                                                                                         |                                                    |                                                       |                                           |
| 25 25                                | ;                                                                                                                                                                                                                                                                                                                       | SS                                                                          | -12                                                       | 24-<br>25.5                                                                          | 17                                                           | 10                                                                 | 16 68<br>50/5"                                                                              |                                                                                       | coarse SAND, little Silt, li<br>Gravel                                                                                                                                                                             | ittle                                                                                     | 3<br>4                                 |                                                      | 25.5                                                                                                    | 562.5                                              |                                                       |                                           |
| LOGS.GPJ LI                          |                                                                                                                                                                                                                                                                                                                         |                                                                             |                                                           |                                                                                      |                                                              |                                                                    |                                                                                             |                                                                                       | SS-10 : Medium dense, g<br>to coarse SAND, little Sil<br>Gravel                                                                                                                                                    | grey, fine<br>t, little                                                                   |                                        |                                                      |                                                                                                         |                                                    |                                                       |                                           |
| 31.07 BORING                         | )                                                                                                                                                                                                                                                                                                                       |                                                                             |                                                           |                                                                                      |                                                              |                                                                    |                                                                                             |                                                                                       | coarse SAND, little Silt, li<br>Gravel                                                                                                                                                                             | e to<br>ittle                                                                             |                                        |                                                      |                                                                                                         |                                                    |                                                       |                                           |
| EST BORING W/ EQUIP. 4010<br>REMARKS | 1 -<br>Gro<br>2 - I<br>3 - I<br>4 - I<br>Filte                                                                                                                                                                                                                                                                          | Test bo<br>bund su<br>NX-size<br>Rollerb<br>Monitor<br>er sand<br>t to 11 1 | pring<br>orfac<br>ed, c<br>it ref<br>ring<br>plac<br>feet | advance<br>e elevati<br>louble-tu<br>fusal ene<br>well inst<br>ce in anr<br>below gr | ed wi<br>on es<br>ibe co<br>count<br>alled<br>nulus<br>rade. | th 4-ir<br>stimate<br>ore ba<br>ered a<br>at 25<br>arour<br>Well o | nch diame<br>ed by sur<br>rrel used<br>at about 2<br>feet. 10 f<br>nd well fro<br>capped at | eter casir<br>veying us<br>to core b<br>5.5 feet.<br>eet of 2"<br>om 13 fee<br>ground | SS-12 : Grey, fine to coa<br>ag and rotary wash drilling<br>sing existing spillway crest<br>between about 7 and 8.5 fe<br>slotted pipe set between 1<br>et to 25 feet. Bentonite sea<br>surface. Roadbox installed | methods. (<br>as benchm<br>eet. Core tii<br>5 and 25 fe<br>al from 11 fe<br>I at ground s | Cas<br>lark<br>mes<br>eet.<br>eet surf | ing blo<br>(El. 58<br>s in uni<br>Well f<br>to 13 fe | ws per foot provid<br>(4.88 ft) and refer<br>ts of min/foot.<br>inished to ground<br>eet below grade. / | led in Casi<br>ences NA<br>surface w<br>Auger spoi | ng Blow<br>VD88.<br><i>r</i> ith solid<br>Is (or filt | s column.<br>PVC pipe.<br>er sand) from 0 |
| CTA LEMPLAIE                         | ratificat<br>/el read<br>ner fact                                                                                                                                                                                                                                                                                       | tion line<br>dings h<br>tors tha                                            | es re<br>lave<br>an th                                    | epresent<br>been m<br>lose pres                                                      | appr<br>ade a<br>sent a                                      | oxima<br>at the<br>at the                                          | te bounda<br>times an<br>times the                                                          | aries betv<br>d under<br>e measure                                                    | ween soil and bedrock type<br>the conditions stated. Flu<br>ements were made.                                                                                                                                      | es. Actual tr<br>ctuations of                                                             | rans<br>f gr                           | sitions I<br>oundwa                                  | nay be gradual. V<br>ater may occur d                                                                   | Vater<br>ue to                                     | Explor<br>C                                           | ation No.:<br>SZ-1                        |

|                          |                                |                             |                                  |                      |                           |                                    |                                    | TEST BORIN                                                                   | G LOG                                        |                                 |                                      |                                         |                                                        |                                 |                                 |                    |                         |
|--------------------------|--------------------------------|-----------------------------|----------------------------------|----------------------|---------------------------|------------------------------------|------------------------------------|------------------------------------------------------------------------------|----------------------------------------------|---------------------------------|--------------------------------------|-----------------------------------------|--------------------------------------------------------|---------------------------------|---------------------------------|--------------------|-------------------------|
| G                        |                                | GZA<br>GeoE                 | <b>nviron</b><br>ers and S       | men<br>Scienti       | t <b>al,</b> I            | [nc.                               |                                    | University of Conn<br>Mirror Lake Da<br>Storrs, Connect                      | ecticut<br>m<br>icut                         |                                 |                                      | EXP<br>SHE<br>PRO<br>REV                | LORATIO<br>ET:<br>JECT NO<br>IEWED B`                  | N NO<br>2 of<br>: 05.0<br>Y: J. | .: GZ<br>f 2<br>004616<br>Davis | 2-1<br>61.07       |                         |
| Logg<br>Drilli<br>Fore   | jed By:<br>ng Co.<br>man:      | S. De<br>Seab<br>M. G       | eAngelis<br>oard Drill<br>lynn   | ling                 |                           |                                    | Type of<br>Rig Mo<br>Drilling      | f <b>Rig:</b> ATV<br>del: D-50T<br>J Method: Rotary Wash                     | Boring L<br>Ground S<br>Final Bo<br>Date Sta | ocat<br>Surfa<br>ring<br>rt - F | ion: S<br>ace Ele<br>Depth<br>inish: | See Pla<br>ev. (ft.<br>(ft.):<br>1/11/2 | an<br><b>):</b> 588<br>25.5<br>2021 - 1/1 <sup>-</sup> | 1/202 <sup>-</sup>              | 1                               | H. Datı<br>V. Datı | ım: NAD83<br>ım: NAVD88 |
| Ham                      | mer Tv                         | <b>De</b> : Ai              | Itomatic                         | Hamr                 | mer                       |                                    | Sample                             | r Type: SS                                                                   |                                              |                                 |                                      |                                         | Groundv                                                | vater                           | Depth                           | (ft.)              |                         |
| Ham                      | mer We                         | eight (                     | <b>Ib.):</b> 14                  | 0                    | 1101                      |                                    | Sample                             | <b>r O.D. (in.):</b> 2.0                                                     |                                              | 1/                              | Date                                 | 1                                       | <b>Time</b>                                            | Wa                              | ater De                         | epth               | Stab. Time              |
| Hami<br>Auge             | mer Fa<br>er or Ca             | l (in.)<br>sing (           | : 30<br>O.D./I.D                 | Dia (i               | n.):                      | 4                                  | Sample<br>Rock C                   | r Length (in.): 24<br>ore Size: NX                                           |                                              | 1/                              | 14/202<br>26/202                     | 1                                       | 0800<br>0800                                           |                                 | 6.95<br>7.0                     |                    | 3 days<br>15 days       |
| Depth<br>(ft)            | Blows/<br>Core<br>Rate         | No.                         | Depth<br>(ft.)                   | Samp<br>Pen.<br>(in) | le<br>Rec.<br>(in)        | Blows<br>per 6"                    | SPT<br>Value                       | Sample Descripti<br>Modified Burmisi                                         | on<br>er                                     | Remark                          | Field<br>Test<br>Data                | Depth<br>(ft.)                          | Stratum<br>Description                                 | Elev.<br>(ft.)                  |                                 |                    |                         |
|                          | - tuto                         |                             |                                  |                      |                           |                                    |                                    | SAND and GRAVEL, litt                                                        | e Silt                                       |                                 |                                      |                                         |                                                        |                                 |                                 |                    |                         |
| -                        |                                |                             |                                  |                      |                           |                                    |                                    | End of exploration at 25.                                                    | 5 feet.                                      |                                 |                                      |                                         |                                                        |                                 |                                 |                    |                         |
|                          |                                |                             |                                  |                      |                           |                                    |                                    |                                                                              |                                              |                                 |                                      |                                         |                                                        |                                 |                                 |                    |                         |
| -                        |                                |                             |                                  |                      |                           |                                    |                                    |                                                                              |                                              |                                 |                                      |                                         |                                                        |                                 |                                 |                    |                         |
| _                        |                                |                             |                                  |                      |                           |                                    |                                    |                                                                              |                                              |                                 |                                      |                                         |                                                        |                                 |                                 |                    |                         |
| 40 _                     |                                |                             |                                  |                      |                           |                                    |                                    |                                                                              |                                              |                                 |                                      |                                         |                                                        |                                 |                                 |                    |                         |
| -                        |                                |                             |                                  |                      |                           |                                    |                                    |                                                                              |                                              |                                 |                                      |                                         |                                                        |                                 |                                 |                    |                         |
| -                        |                                |                             |                                  |                      |                           |                                    |                                    |                                                                              |                                              |                                 |                                      |                                         |                                                        |                                 |                                 |                    |                         |
| 45 _                     |                                |                             |                                  |                      |                           |                                    |                                    |                                                                              |                                              |                                 |                                      |                                         |                                                        |                                 |                                 |                    |                         |
| -                        |                                |                             |                                  |                      |                           |                                    |                                    |                                                                              |                                              |                                 |                                      |                                         |                                                        |                                 |                                 |                    |                         |
| -                        |                                |                             |                                  |                      |                           |                                    |                                    |                                                                              |                                              |                                 |                                      |                                         |                                                        |                                 |                                 |                    |                         |
| 50 _                     |                                |                             |                                  |                      |                           |                                    |                                    |                                                                              |                                              |                                 |                                      |                                         |                                                        |                                 |                                 |                    |                         |
| -                        |                                |                             |                                  |                      |                           |                                    |                                    |                                                                              |                                              |                                 |                                      |                                         |                                                        |                                 |                                 |                    |                         |
| - 55                     |                                |                             |                                  |                      |                           |                                    |                                    |                                                                              |                                              |                                 |                                      |                                         |                                                        |                                 |                                 |                    |                         |
|                          |                                |                             |                                  |                      |                           |                                    |                                    |                                                                              |                                              |                                 |                                      |                                         |                                                        |                                 |                                 |                    |                         |
| -                        |                                |                             |                                  |                      |                           |                                    |                                    |                                                                              |                                              |                                 |                                      |                                         |                                                        |                                 |                                 |                    |                         |
| -<br>60                  |                                |                             |                                  |                      |                           |                                    |                                    |                                                                              |                                              |                                 |                                      |                                         |                                                        |                                 |                                 |                    |                         |
| _                        |                                |                             |                                  |                      |                           |                                    |                                    |                                                                              |                                              |                                 |                                      |                                         |                                                        |                                 |                                 |                    |                         |
| s                        | <u>I</u>                       | <u> </u>                    | 1                                | 1                    | <u> </u>                  |                                    | I                                  | 1                                                                            |                                              | I                               |                                      | <u> </u>                                |                                                        |                                 | 1                               |                    |                         |
| MARK                     |                                |                             |                                  |                      |                           |                                    |                                    |                                                                              |                                              |                                 |                                      |                                         |                                                        |                                 |                                 |                    |                         |
| RE                       |                                |                             |                                  |                      |                           |                                    |                                    |                                                                              |                                              |                                 |                                      |                                         |                                                        |                                 |                                 |                    |                         |
| Strati<br>level<br>other | fication<br>reading<br>factors | lines r<br>s have<br>than t | represen<br>e been n<br>hose pre | t appr<br>nade a     | oxima<br>at the<br>at the | te bounda<br>times an<br>times the | aries betv<br>id under<br>e measur | ween soil and bedrock typ<br>the conditions stated. Flu<br>ements were made. | es. Actual t<br>ctuations o                  | trans                           | itions i<br>oundw                    | may be<br>ater m                        | e gradual.<br>ay occur o                               | Water<br>due to                 | E                               | xplora<br>G        | ation No.:<br>Z-1       |
|                          | -                              | -                           |                                  |                      |                           |                                    |                                    |                                                                              |                                              |                                 |                                      |                                         |                                                        |                                 |                                 |                    |                         |

|                         |                                                                                                                                                                                            |                                                          |                                                                                     |                                                          |                                                                 |                                                                                                    |                                                                                              | TEST BORIN                                                                                                                                                                | G LOG                                                              |                                      |                                                  |                                                      |                                                                     |                                               |                                                            |                                                               |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------|--------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------|------------------------------------------------------------|---------------------------------------------------------------|
| G                       |                                                                                                                                                                                            | GZA<br>GeoE<br>Enginee                                   | <b>nviron</b><br>ers and S                                                          | men<br>Scienti                                           | sts                                                             | Inc.                                                                                               |                                                                                              | University of Conne<br>Mirror Lake Da<br>Storrs, Connecti                                                                                                                 | ecticut<br>m<br>icut                                               |                                      |                                                  | EXPI<br>SHEI<br>PRO<br>REVI                          | Loratio<br>et:<br>Ject No:<br>Iewed B`                              | N NO.<br>1 of<br>: 05.0<br>Y: J. I            | : GZ-2<br>1<br>)046161.0<br>Davis                          | 17                                                            |
| Logg<br>Drill<br>Fore   | jed By:<br>ing Co.<br>man:                                                                                                                                                                 | S. De<br>Seab<br>M. G                                    | Angelis<br>oard Drill<br>lynn                                                       | ing                                                      |                                                                 |                                                                                                    | Type of<br>Rig Moo<br>Drilling                                                               | <b>Rig:</b> ATV<br>del: D-50T<br>J Method: Rotary Wash                                                                                                                    | Boring L<br>Ground S<br>Final Bo<br>Date Sta                       | oca<br>Surf<br>ring<br>rt - l        | tion: S<br>ace El<br>Depth<br>Finish             | See Pla<br>ev. (ft.)<br>n (ft.):<br>: 1/8/20         | an<br>): 582.9<br>24.9<br>)21 - 1/8/2                               | 021                                           | H. I<br>V. I                                               | Datum: NAD83<br>Datum: NAVD88                                 |
| Ham                     | mer Ty                                                                                                                                                                                     | pe: Au                                                   | Itomatic                                                                            | Hamr                                                     | ner                                                             |                                                                                                    | Sample                                                                                       | r Type: SS                                                                                                                                                                |                                                                    |                                      | Data                                             |                                                      | Groundw                                                             | vater                                         | Depth (ft.                                                 | )                                                             |
| Ham<br>Ham<br>Auge      | mer We<br>mer Fa<br>er or Ca                                                                                                                                                               | eight (<br>II (in.):<br>Ising (                          | lb.): 14<br>: 30<br>D.D./I.D                                                        | 0<br><b>Dia (i</b>                                       | n.):                                                            | 4                                                                                                  | Sample<br>Sample<br>Rock Co                                                                  | r O.D. (in.): 2.0<br>r Length (in.): 24<br>ore Size: NX                                                                                                                   |                                                                    | 1,<br>1,<br>1,<br>1,                 | Date<br>/11/202<br>/12/202<br>/14/202<br>/26/202 | 1<br>1<br>1<br>1                                     | 0800<br>0800<br>0800<br>0800<br>0800                                | vva                                           | 3.6<br>3.2<br>3.35<br>3.25                                 | 3 days<br>4 days<br>6 days<br>18 days                         |
| Depth<br>(ft)           | Casing<br>Blows/<br>Core<br>Rate                                                                                                                                                           | No.                                                      | Depth<br>(ft.)                                                                      | Samp<br>Pen.<br>(in)                                     | Rec.<br>(in)                                                    | Blows<br>per 6"                                                                                    | SPT<br>Value                                                                                 | Sample Descripti<br>Modified Burmist                                                                                                                                      | on<br>er                                                           | Remark                               | Field<br>Test<br>Data                            | Depth<br>(ft.)                                       | Stratum<br>escription                                               | Elev.<br>(ft.)                                |                                                            |                                                               |
|                         | 16                                                                                                                                                                                         | SS-1                                                     | 0-2                                                                                 | 24                                                       | 14                                                              | 16                                                                                                 |                                                                                              | SS-1 : Top 6" TOPSOIL                                                                                                                                                     |                                                                    | 1                                    |                                                  |                                                      |                                                                     |                                               |                                                            |                                                               |
| -                       | 12     12     10     16     Bottom 8": Brown, grey, fine to coarse SAND and SILT, some fine Gravel       26     26     14     3 2     fine Gravel                                          |                                                          |                                                                                     |                                                          |                                                                 |                                                                                                    |                                                                                              |                                                                                                                                                                           |                                                                    |                                      |                                                  |                                                      |                                                                     |                                               |                                                            |                                                               |
|                         | 18     SS-2     2-4     24     14     3 2     coarse SAND and SILT, some fine Gravel       26     1 9     3     SS-2 : Very loose, brown, fine to     File                                 |                                                          |                                                                                     |                                                          |                                                                 |                                                                                                    |                                                                                              |                                                                                                                                                                           |                                                                    |                                      |                                                  |                                                      |                                                                     |                                               |                                                            | Auger Speile (01 61)                                          |
|                         | 10       SS-2       2-4       24       14       3 2       fine Gravel         26       1       1       9       3       SS-2 : Very loose, brown, fine to coarse SAND and SILT, little fine |                                                          |                                                                                     |                                                          |                                                                 |                                                                                                    |                                                                                              |                                                                                                                                                                           |                                                                    |                                      |                                                  |                                                      |                                                                     |                                               |                                                            | Auger Spolls (0-6)                                            |
| 5                       | 26     19     3     SS-2: Very loose, brown, fine to       21     SS-3     4-6     24     9     5 2     coarse SAND and SILT, little fine       34     3     2     5     Gravel            |                                                          |                                                                                     |                                                          |                                                                 |                                                                                                    |                                                                                              |                                                                                                                                                                           |                                                                    |                                      |                                                  |                                                      |                                                                     |                                               |                                                            | 2" DVC Piper                                                  |
|                         | 21     SS-3     4-6     24     9     5     2     coarse SAND and SILT, little fine       34     3     2     5     Gravel       55     55     55     SS-3 : Loose, brown, fine to           |                                                          |                                                                                     |                                                          |                                                                 |                                                                                                    |                                                                                              |                                                                                                                                                                           |                                                                    |                                      |                                                  |                                                      |                                                                     |                                               |                                                            | (0-10')                                                       |
|                         | 34         32         5         Gravel           35         SS-4         6-8         24         19         6         18         coarse SAND and SILT, trace fine                           |                                                          |                                                                                     |                                                          |                                                                 |                                                                                                    |                                                                                              |                                                                                                                                                                           |                                                                    |                                      |                                                  |                                                      |                                                                     |                                               |                                                            | Bantonita China                                               |
|                         | 51                                                                                                                                                                                         |                                                          |                                                                                     |                                                          |                                                                 | 25 20                                                                                              | 43                                                                                           | Gravel                                                                                                                                                                    | . 4.                                                               |                                      |                                                  | 7.5                                                  |                                                                     | 575.4                                         |                                                            | (6'-8')                                                       |
| -                       | 9                                                                                                                                                                                          | SS-5                                                     | 8-10                                                                                | 24                                                       | 12                                                              | 16 21                                                                                              | 1.0                                                                                          | coarse SAND. some Silt                                                                                                                                                    | le to<br>. little fine                                             |                                      |                                                  |                                                      |                                                                     |                                               |                                                            | •                                                             |
| 10 _                    | 32<br>32                                                                                                                                                                                   |                                                          |                                                                                     |                                                          |                                                                 | 19 21                                                                                              | 40                                                                                           | Gravel                                                                                                                                                                    | ,                                                                  |                                      |                                                  |                                                      |                                                                     |                                               |                                                            |                                                               |
|                         | 52                                                                                                                                                                                         | SS-6                                                     | 10-12                                                                               | 24                                                       | 11                                                              | 11 10                                                                                              |                                                                                              | SS-5 : Dense, brown, fin                                                                                                                                                  | e to                                                               |                                      |                                                  |                                                      |                                                                     |                                               |                                                            |                                                               |
|                         | 40                                                                                                                                                                                         |                                                          |                                                                                     |                                                          |                                                                 | 11.9                                                                                               | 21                                                                                           | coarse SAND, little Silt, t                                                                                                                                               | race fine                                                          |                                      |                                                  |                                                      |                                                                     |                                               |                                                            | 4<br>-<br>-                                                   |
|                         | 40                                                                                                                                                                                         | SS-7                                                     | 12-14                                                                               | 24                                                       | 24                                                              | 9 18                                                                                               | 45                                                                                           | SS-6 : Medium dense, g                                                                                                                                                    | rey, fine                                                          |                                      |                                                  |                                                      |                                                                     |                                               |                                                            |                                                               |
| -                       | 30                                                                                                                                                                                         |                                                          |                                                                                     |                                                          |                                                                 | 21 24                                                                                              | 45                                                                                           | to coarse SAND, little fin                                                                                                                                                | e Gravel,                                                          |                                      |                                                  |                                                      | GLACIAL TILL                                                        |                                               |                                                            | ■ Filter Sand (8'-20')                                        |
| 15 _                    | 37                                                                                                                                                                                         | SS-8                                                     | 14-16                                                                               | 24                                                       | 18                                                              | 8 18                                                                                               | 50                                                                                           | little Silt<br>SS-7 · Dense grev fine                                                                                                                                     | to                                                                 |                                      |                                                  |                                                      |                                                                     |                                               |                                                            | Screen (10'-20')                                              |
| -                       | 01                                                                                                                                                                                         |                                                          | 10                                                                                  |                                                          |                                                                 |                                                                                                    | 55                                                                                           | medium SAND, little Silt,                                                                                                                                                 | trace                                                              |                                      |                                                  |                                                      |                                                                     |                                               |                                                            |                                                               |
| -                       | -                                                                                                                                                                                          | 55-9                                                     | 16-                                                                                 | 9                                                        | 9                                                               | 74 50/3                                                                                            | 5                                                                                            | fine Gravel                                                                                                                                                               |                                                                    |                                      |                                                  |                                                      |                                                                     |                                               |                                                            |                                                               |
| -                       | -                                                                                                                                                                                          | CC 10                                                    | 10                                                                                  | 10                                                       | 10                                                              | 20.44                                                                                              |                                                                                              | SS-8 : Grey, fine to med                                                                                                                                                  | ium<br>trace Silt                                                  |                                      |                                                  |                                                      |                                                                     |                                               |                                                            | 3<br>3<br>4                                                   |
| -                       | -                                                                                                                                                                                          | 55-10                                                    | 19.6                                                                                | 10                                                       | 12                                                              | 40                                                                                                 | 84                                                                                           | SS-9 : Very dense, grey,                                                                                                                                                  | fine to                                                            |                                      |                                                  | 19.5                                                 |                                                                     | 563.4                                         |                                                            |                                                               |
| 20 _                    | 2:30                                                                                                                                                                                       | C-1                                                      | 19.8-                                                                               | 60                                                       | 43                                                              |                                                                                                    |                                                                                              | medium SAND, little fine                                                                                                                                                  | Gravel,                                                            | 2                                    |                                                  |                                                      |                                                                     |                                               |                                                            |                                                               |
|                         | 4:00                                                                                                                                                                                       |                                                          | 24.8                                                                                |                                                          |                                                                 |                                                                                                    |                                                                                              | little Silt<br>SS-10 : Very dense, grev                                                                                                                                   | , fine to                                                          | 3                                    |                                                  |                                                      |                                                                     |                                               |                                                            |                                                               |
| -                       | 4:30                                                                                                                                                                                       |                                                          |                                                                                     |                                                          |                                                                 |                                                                                                    |                                                                                              | coarse SAND, some fine                                                                                                                                                    | e Gravel,                                                          |                                      |                                                  |                                                      | BEDROCK                                                             |                                               |                                                            |                                                               |
|                         | 4:00                                                                                                                                                                                       |                                                          |                                                                                     |                                                          |                                                                 |                                                                                                    |                                                                                              | little Silt                                                                                                                                                               |                                                                    |                                      |                                                  |                                                      |                                                                     |                                               |                                                            |                                                               |
|                         | 5:15                                                                                                                                                                                       |                                                          |                                                                                     |                                                          |                                                                 |                                                                                                    |                                                                                              | C-1 : Hard, very slight we<br>sound to slightly fracture                                                                                                                  | eathering,                                                         |                                      |                                                  |                                                      |                                                                     |                                               |                                                            |                                                               |
| 25 _                    |                                                                                                                                                                                            |                                                          |                                                                                     |                                                          |                                                                 |                                                                                                    |                                                                                              | medium grained, grey G                                                                                                                                                    | NEISS                                                              |                                      |                                                  | 24.9                                                 |                                                                     | 558.0                                         |                                                            |                                                               |
| - 10                    |                                                                                                                                                                                            |                                                          |                                                                                     |                                                          |                                                                 |                                                                                                    |                                                                                              | REC = 72% RQD = 68%                                                                                                                                                       | þ                                                                  |                                      |                                                  |                                                      |                                                                     |                                               |                                                            |                                                               |
| -                       |                                                                                                                                                                                            |                                                          |                                                                                     |                                                          |                                                                 |                                                                                                    |                                                                                              | End of exploration at 24.                                                                                                                                                 | 9 feet.                                                            |                                      |                                                  |                                                      |                                                                     |                                               |                                                            |                                                               |
|                         | -                                                                                                                                                                                          |                                                          |                                                                                     |                                                          |                                                                 |                                                                                                    |                                                                                              |                                                                                                                                                                           |                                                                    |                                      |                                                  |                                                      |                                                                     |                                               |                                                            |                                                               |
| 30 _                    |                                                                                                                                                                                            |                                                          |                                                                                     |                                                          |                                                                 |                                                                                                    |                                                                                              |                                                                                                                                                                           |                                                                    | 4                                    |                                                  |                                                      |                                                                     |                                               |                                                            |                                                               |
| REMARKS                 | 1 - Tesi<br>Ground<br>2 - Roll<br>3 - NX-<br>4 - Mor<br>pipe. F<br>0 feet to                                                                                                               | t boring<br>surfacerbit resized,<br>nitoring<br>ilter sa | g advance<br>ce eleval<br>efusal en<br>double-t<br>well ins<br>and place<br>t below | iced wi<br>icount<br>ube c<br>talled<br>e in ar<br>grade | th 4-in<br>stimat<br>tered<br>ore ba<br>at 20<br>nulus<br>. Roa | L<br>nch diame<br>ted by sur<br>at about 1<br>arrel used<br>feet. 10 f<br>s around v<br>dbox insta | eter casin<br>veying us<br>9.8 feet.<br>to core b<br>feet of 2"<br>well from<br>illed at gro | l<br>g and rotary wash drilling<br>sing existing spillway crest<br>pedrock. Core times in un<br>slotted PVC pipe set betw<br>8 feet to 20 feet. Bentonit<br>ound surface. | methods.<br>as benchr<br>its of min/f<br>veen 10 an<br>e seal fron | Cas<br>nark<br>oot.<br>d 20<br>n 6 f | RQD<br>feet to 8                                 | us per<br>34.88 ft<br>= Rock<br>Well fin<br>8 feet b | foot provid<br>) and refe<br>Quality D<br>nished to g<br>elow grade | ded in<br>rences<br>esigna<br>round<br>e. Aug | Casing B<br>s NAVD88<br>ation<br>I surface v<br>ger spoils | lows column.<br>3.<br>vith solid PVC<br>(or filter sand) from |
| Strat<br>level<br>other | fication<br>reading<br>factors                                                                                                                                                             | lines r<br>s have<br>than t                              | epresen<br>e been n<br>hose pre                                                     | t appr<br>nade a<br>esent a                              | roxima<br>at the<br>at the                                      | ate bounda<br>times an<br>times the                                                                | aries betw<br>d under<br>e measure                                                           | ween soil and bedrock typ<br>the conditions stated. Flu<br>ements were made.                                                                                              | es. Actual t                                                       | trans<br>of gr                       | sitions<br>oundw                                 | may be<br>vater ma                                   | gradual. \<br>ay occur c                                            | Water<br>lue to                               | Exp                                                        | loration No.:<br>GZ-2                                         |

|                        |                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                      |                                                            |                                               |                                      |                                                                    |                                                 | TEST BORIN                                                                                            | G LOG                                           |                                |                                        |                                                                  |                                               |                                                                                                                 |                               |
|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------|--------------------------------------|--------------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------|--------------------------------|----------------------------------------|------------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------|
| G                      |                                                                                                                                                                                                                                                                                                                                                                                                                      | GZA<br>GeoE1<br>Inginee                              | <b>nviron</b><br>rs and S                                  | men<br>cienti.                                | t <b>al,</b> ]                       | lnc.                                                               |                                                 | University of Conne<br>Mirror Lake Dan<br>Storrs, Connection                                          | ecticut<br>m<br>cut                             |                                |                                        | EXPLORATION<br>SHEET:<br>PROJECT NO:<br>REVIEWED BY              | I NO.: G2<br>1 of 2<br>05.00461<br>: J. Davis | Z-3<br>61.07                                                                                                    |                               |
| Log<br>Drill<br>Fore   | ged By:<br>ing Co.<br>eman:                                                                                                                                                                                                                                                                                                                                                                                          | S. De<br>Seabo<br>M. Gl                              | Angelis<br>bard Drill<br>ynn                               | ing                                           |                                      |                                                                    | Type of<br>Rig Moo<br>Drilling                  | Rig: ATV<br>del: D-50T<br>Method: Roatary Wash                                                        | Boring Lo<br>Ground S<br>Final Bor<br>Date Star | ocat<br>Surfa<br>ing<br>rt - F | tion: S<br>ace Ele<br>Depth<br>Finish: | See Plan<br>ev. (ft.): 588.1<br>(ft.): 33.5<br>1/13/2021 - 1/14/ | /2021                                         | H. Dat<br>V. Dat                                                                                                | um: NAD83<br>um: NAVD88       |
| Harr                   | mer Ty                                                                                                                                                                                                                                                                                                                                                                                                               | <b>be:</b> Au                                        | tomatic                                                    | Hamr                                          | ner                                  | :                                                                  | Sample                                          | r Type: SS                                                                                            |                                                 |                                | Data                                   | Groundwa                                                         | ater Depth                                    | n (ft.)                                                                                                         | Stab Time                     |
| Harr<br>Harr<br>Aug    | imer We<br>imer Fal<br>er or Ca                                                                                                                                                                                                                                                                                                                                                                                      | ight (l<br>l (in.):<br>sing C                        | <b>b.):</b> 140<br>30<br><b>).D./I.D</b>                   | 0<br>Dia (i                                   | n.):                                 | 4                                                                  | Sample<br>Sample<br>Rock Co                     | r O.D. (in.): 2.0<br>r Length (in.): 24<br>ore Size: NX                                               |                                                 | 1/<br>1/                       | 14/202<br>26/202                       | 1 1500<br>1 0800                                                 | 6.7<br>7.1                                    | epin                                                                                                            | 5 min.<br>12 days             |
| Depth<br>(ft)          | Casing<br>Blows/<br>Core<br>Rate                                                                                                                                                                                                                                                                                                                                                                                     | No.                                                  | Depth<br>(ft.)                                             | Samp<br>Pen.<br>(in)                          | le<br>Rec.<br>(in)                   | Blows<br>per 6"                                                    | SPT<br>Value                                    | Sample Description                                                                                    | on<br>er                                        | Remark                         | Field<br>Test<br>Data                  | Stratum                                                          | Elev.<br>(ft.)                                | Letter the second se |                               |
|                        | 12                                                                                                                                                                                                                                                                                                                                                                                                                   | SS-1                                                 | 0-2                                                        | 24                                            | 0                                    | 6 2                                                                |                                                 | SS-1 : No Recovery                                                                                    |                                                 | 1                              | Data                                   | A.3 ASPHALT                                                      | 587,8                                         |                                                                                                                 |                               |
|                        | 19<br>18<br>10                                                                                                                                                                                                                                                                                                                                                                                                       | SS-2                                                 | 2-4                                                        | 24                                            | 13                                   | 2 1<br>3 2<br>3 3                                                  | 4                                               | SS-2 : Loose, brown, fine<br>coarse SAND and SILT. I                                                  | e to<br>little fine                             |                                |                                        |                                                                  |                                               |                                                                                                                 |                               |
| 5 _                    | 5       17       SS-3       4-6       24       14       2 3       3 4       6       Gravel         34       34       34       6       SS-3 : Loose, brown, SILT and fine to coarse SAND, trace fine Gravel       SS-3 : Loose, brown, SILT and fine to coarse SAND, trace fine Gravel       EMBANKMENT FILL         31       5       6       8       SS-4 : Loose, brown, fine to       SS-4 : Loose, brown, fine to |                                                      |                                                            |                                               |                                      |                                                                    |                                                 |                                                                                                       |                                                 |                                |                                        |                                                                  |                                               |                                                                                                                 |                               |
|                        | - 44<br>- 31                                                                                                                                                                                                                                                                                                                                                                                                         | SS-4                                                 | 6-8                                                        | 24                                            | 20                                   | 43<br>56                                                           | 8                                               | Gravel<br>SS-4 : Loose, brown, fine                                                                   | e to                                            |                                |                                        | EMBANKMENT FILL                                                  |                                               | V                                                                                                               | —Auger Spoils<br>(0'-14')     |
| 10                     | 7                                                                                                                                                                                                                                                                                                                                                                                                                    | SS-5                                                 | 8-10                                                       | 24                                            | 17                                   | 52<br>22                                                           | 4                                               | Gravel<br>SS-5 : Loose, brown, fine                                                                   | e to                                            |                                |                                        |                                                                  |                                               |                                                                                                                 | —2" PVC Riser<br>(0-18')      |
| _                      | 10<br>12                                                                                                                                                                                                                                                                                                                                                                                                             | SS-6                                                 | 10-12                                                      | 24                                            | 0                                    | 5 26<br>24 30                                                      | 50                                              | coarse SAND and SILT, I<br>Gravel<br>SS-6 : No Recovery                                               | little fine                                     |                                |                                        | <u>11</u>                                                        | 577.1                                         |                                                                                                                 |                               |
|                        | 13<br>48                                                                                                                                                                                                                                                                                                                                                                                                             | SS-7                                                 | 12-14                                                      | 24                                            | 12                                   | 10 29<br>30 27                                                     | 59                                              | SS-7 : Very dense, grey,<br>coarse SAND, some Gra<br>Silt                                             | fine to<br>vel, little                          |                                |                                        |                                                                  |                                               |                                                                                                                 |                               |
| 15 _                   | 47<br>61<br>67                                                                                                                                                                                                                                                                                                                                                                                                       | SS-8                                                 | 14-16                                                      | 24                                            | 14                                   | 17 27<br>27 22                                                     | 54                                              | SS-8 : Very dense, grey,<br>coarse SAND, some Gra                                                     | fine to<br>vel, little                          |                                |                                        |                                                                  |                                               |                                                                                                                 | -Bentonite Chips<br>(14'-16') |
|                        | - 59<br>- 60                                                                                                                                                                                                                                                                                                                                                                                                         | 55-9                                                 | 16-18                                                      | 24                                            | 13                                   | 29 28<br>18 15                                                     | 46                                              | SIIT<br>SS-9 : Dense, grey, fine t<br>SAND, some Gravel, little                                       | to coarse<br>e Silt                             |                                |                                        |                                                                  |                                               |                                                                                                                 |                               |
| 20 _                   | 28<br>30                                                                                                                                                                                                                                                                                                                                                                                                             | SS-10                                                | 20-                                                        | 16                                            | 8                                    | 13 10<br>14 19<br>12 22                                            | 32                                              | SS-10 : Dense, grey, fine<br>little fine Gravel, little Silt                                          | e SAND,                                         |                                |                                        | GLACIAL TILL                                                     |                                               |                                                                                                                 |                               |
|                        | - 35<br>- 46                                                                                                                                                                                                                                                                                                                                                                                                         | 0011                                                 | 21.4                                                       |                                               | 0                                    | 50/4"                                                              |                                                 | SAND, some Gravel, son                                                                                | ne Silt                                         | 2                              |                                        |                                                                  |                                               |                                                                                                                 | -Filter Sand (16'-28')        |
|                        | 49                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                      |                                                            |                                               |                                      |                                                                    |                                                 |                                                                                                       |                                                 |                                |                                        |                                                                  |                                               |                                                                                                                 | —Screen (18'-28')             |
| 25 _                   | 25<br>29                                                                                                                                                                                                                                                                                                                                                                                                             | SS-12                                                | 24-<br>25.7                                                | 21                                            | 13                                   | 22 26<br>26 50/3'                                                  | 52                                              | SS-12 : Very dense, grey<br>coarse SAND, some Silt,<br>Gravel                                         | r, fine to<br>little                            |                                |                                        |                                                                  |                                               |                                                                                                                 |                               |
|                        | 21<br>24<br>49                                                                                                                                                                                                                                                                                                                                                                                                       | SS-13                                                | 26-<br>27.7                                                | 21                                            | 10                                   | 14 16<br>36 50/3'                                                  | 52                                              | SS-13 : Very dense, grey<br>fine to coarse SAND, son                                                  | v, brown,<br>ne Silt,                           | ~                              |                                        | 28.5                                                             | 550 6                                         |                                                                                                                 |                               |
| 30 _                   | 4:30                                                                                                                                                                                                                                                                                                                                                                                                                 | C-1                                                  | 28.5-<br>33.5                                              | 60                                            | 60                                   |                                                                    |                                                 | C-1 : Hard, very slight we<br>slightly fractured, fine to r<br>grained, grev GNEISS                   | eathering,<br>medium                            | 3<br>4                         |                                        | BEDROCK                                                          | 000.0                                         |                                                                                                                 |                               |
| REMARKS                | 1 - Tes<br>Ground<br>2 - Diffi<br>3 - Roll<br>4 - NX-                                                                                                                                                                                                                                                                                                                                                                | boring<br>surfac<br>cult rol<br>erbit ar<br>sized, c | advanc<br>ce elevat<br>lerbit res<br>nd casin<br>double-tu | ed wi<br>ion es<br>sistan<br>g refu<br>ube co | th 4-ir<br>ce en<br>sal at<br>ore ba | nch diame<br>ed by surv<br>countered<br>28.5 feet.<br>arrel used t | ter casin<br>reying us<br>at about<br>to core b | g and rotary wash drilling<br>ing existing spillway crest<br>t 22 feet.<br>bedrock. Core times in uni | methods.<br>as benchm<br>ts of min/fo           | Cas<br>nark<br>pot.            | ing blo<br>(El. 58<br>RQD =            | ws per foot provid<br>4.88 ft) and refer<br>= Rock Quality De    | ed in Casir<br>ences NAV<br>signation         | ng Blow<br>/D88.                                                                                                | s column.                     |
| Strat<br>level<br>othe | tification<br>reading<br>r factors                                                                                                                                                                                                                                                                                                                                                                                   | lines re<br>s have<br>than th                        | epresent<br>been m<br>nose pre                             | t appr<br>nade a<br>sent a                    | oxima<br>at the<br>at the            | te bounda<br>times and<br>times the                                | ries betv<br>d under<br>measure                 | ween soil and bedrock type<br>the conditions stated. Flue<br>ements were made.                        | es. Actual t<br>ctuations o                     | rans<br>of gr                  | sitions i<br>oundwa                    | may be gradual. W<br>ater may occur di                           | Vater E<br>ue to                              | xplor<br>(                                                                                                      | ation No.:<br>3Z-3            |

|                |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                              |                             |                           |                                    |                                   | TEST BORIN                                                                   | G LOG                                           |                                 |                                            |                                         |                                      |                                     |                                   |                             |
|----------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-----------------------------|---------------------------|------------------------------------|-----------------------------------|------------------------------------------------------------------------------|-------------------------------------------------|---------------------------------|--------------------------------------------|-----------------------------------------|--------------------------------------|-------------------------------------|-----------------------------------|-----------------------------|
| C              | -<br>7                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | GZA<br>GeoEi<br>nginee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>nviron</b><br>ers and S                   | men<br>'cienti:             | <b>tal,</b> ]             | lnc.                               |                                   | University of Conne<br>Mirror Lake Da<br>Storrs, Connect                     | ecticut<br>m<br>icut                            |                                 |                                            | EXP<br>SHE<br>PRO<br>REV                | LORATIO<br>ET:<br>JECT NO<br>IEWED B | N NO.:<br>2 of<br>: 05.0<br>Y: J. [ | : GZ-3<br>2<br>046161.07<br>Davis |                             |
| Lo<br>Di<br>Fo | ogge<br>rillir<br>oren  | ed By:<br>ng Co.:<br>nan:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | S. De<br>Seabo<br>M. Gl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Angelis<br>bard Drill<br>lynn                | ing                         |                           |                                    | Type of<br>Rig Mo<br>Drilling     | f <b>Rig:</b> ATV<br>del: D-50T<br>J Method: Roatary Wash                    | Boring Lo<br>Ground S<br>Final Bor<br>Date Star | ocat<br>Surfa<br>'ing<br>'t - F | ion: S<br>ace Ele<br>Depth<br>Finish:      | See Pla<br>ev. (ft.<br>(ft.):<br>1/13/2 | an<br>): 588.1<br>33.5<br>2021 - 1/1 | 4/2021                              | H. Da<br>V. Da                    | atum: NAD83<br>atum: NAVD88 |
| На             | amn                     | ner Ty                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TEST BORING LOG         GZA<br>CecEnvironmental, Inc.<br>Engineers and Scientists       University of Connecticut<br>Nitror, Connecticut       EXPLORATION<br>SHEET:<br>ROLEOT NO:<br>Revieweb BY:         By: S. DeAngelis<br>Co: Seaboard Drilling<br>n: M. Glynn       Type of Rig: ATV<br>Rig Model: D-507<br>Drilling Method: Roatary Wash       Boring Location: See Plan<br>Ground Surface Elev. (ft.): 33.5<br>Date Start - Finish: 1/13/2021 - 1/14/2<br>Sampler DO. (in.): 2.0<br>Sampler DO. (in.): 2.0<br>Sampler Coce Size: NX       Sampler Type: SS<br>Sampler DO. (in.): 2.0<br>Sampler Coce Size: NX       Tree<br>Sample Description<br>Rec Core Size: NX         Weight (ft.): 140<br>Tree<br>ate       Sampler OD. (in.): 2.0<br>Sampler Coce Size: NX       Tree<br>Sample Description<br>Rec Core Size: NX       Tree<br>Sample Description<br>Start - Finish: 1/13/2021 - 1/14/2<br>Date         Weight (ft.): 30<br>re Casing O.D.I.D Dia (in.): 4       Sample Description<br>Rec Core Size: NX       Tree<br>Sample Description<br>Start - Finish: 1/12/2021 - 1/14/2<br>Date       Sample Description<br>Start - Finish: 1/12/2021 - 1/14/2<br>Date         Weight (ft.): 30<br>read       End of exploration at 33.5 feet.       Sample Description<br>Start - Start - Start       Sample Description<br>Start - Start - Start                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                              |                             |                           |                                    |                                   |                                                                              |                                                 |                                 |                                            | water [                                 | Depth (ft.)                          | Otale Time                          |                                   |                             |
| Ha<br>Ha<br>Ai | amn<br>amn<br>ugei      | her We<br>her Fal<br>r or Ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ight (l<br>l (in.):<br>sing (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | l <b>b.):</b> 140<br>: 30<br><b>D.D./I.D</b> | 0<br>Dia (i                 | n.):                      | 4                                  | Sample<br>Sample<br>Rock C        | er O.D. (in.): 2.0<br>er Length (in.): 24<br>ore Size: NX                    |                                                 | 1/<br>1/                        | 14/202 <sup>2</sup><br>26/202 <sup>2</sup> | 1                                       | 1500<br>0800                         | vva                                 | 6.7<br>7.1                        | 5 min.<br>12 days           |
| De             | pth                     | Casing<br>Blows/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TEST BORING LOG       GZA<br>GeoEnvironmental, Inc.<br>Engineers and Scientists     ExpLoRATIC<br>Mirror Lake Dam<br>Storrs, Connecticut     EXPLORATIC<br>Mirror Lake Dam<br>Ground Scientists       39: 5. DeArogelis<br>S. S. DeArogelis<br>S. M. Glynn     Type of Rig: ATV<br>Rig Model: D-50T<br>Drilling Method: Roatary Wash     Boring Location: See Plan<br>Ground Surface Elev. (ft.): 58.1<br>Enal Scing Depth (ft.): 2021 - 1/1<br>(1/20201 - 1/10<br>(1/202021 - 1/1<br>(1/20201 - 1 |                                              |                             |                           |                                    |                                   |                                                                              |                                                 |                                 |                                            |                                         |                                      |                                     |                                   |                             |
| (f             | t)                      | Core<br>Rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TEST BORING LOG         CZA<br>CepEnvironmental, Inc.<br>Engineers and Scientas       Liniversity of Connecticut<br>Mirror Lake Dam<br>Storrs, Connecticut       EXPLORATION<br>SHEET:<br>PROJECT NO:<br>RevieweD BY         By:       S. DaAngelis<br>Co. Seabcard Driling<br>n::       Type of Rig: ATV<br>Rig Model: D-SOT<br>Drilling Method: Reatary Wash       Boring Location: See Plan<br>Ground Surface Elev. (ft): S88.1<br>Drilling Method: Reatary Wash         Prope:       Automatic Hammer<br>veget (casing O.D.ID Dia (in.): 4       Sampler Type: SS<br>Sampler Length (in.): 2.0<br>Sampler Length (in.): 2.0<br>Sampler Co. (in.): 2.0<br>Sampler Co. (in.): 2.0<br>Sampler Length (in.): 3.0<br>Sampler Length (in.): 3.0<br>Sampler Length (in.): 4         Brewook       Biows<br>Sampler S       Sampler Sample<br>Sampler Length (in.): 4       Sampler Sample<br>Sampler Sample<br>Sampler Sample       Sampler Sample<br>Sampler Sample<br>Sampler Sample         Image: Sampler Samp                                                                                                                       |                                              |                             |                           |                                    |                                   |                                                                              |                                                 |                                 |                                            |                                         |                                      | Ele<br>(ff                          |                                   |                             |
|                | -                       | No.       Depth (ft.)       Pen. (in)       Rec. (in)       Blows per 6"       SPT Value       Sample Description Modified Burmister       Test Data       Description at Data         3:45       3:45       3:00       5       8EC=100% RQD=97%       5       BEDROCK         3:00       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 <td< td=""><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                              |                             |                           |                                    |                                   |                                                                              |                                                 |                                 |                                            |                                         |                                      |                                     |                                   |                             |
|                | -                       | Rate         (II.)         (III)         (III)         per 0         III         per 0         III         per 0         IIII         per 0         IIIII         per 0         IIIIIIIII         per 0         IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                              |                             |                           |                                    |                                   |                                                                              |                                                 |                                 |                                            |                                         |                                      | 554.6                               |                                   |                             |
| 35             | 5                       | TEST BORING LOG       Colspan="2">CA<br>GolDavironmental, Inc.<br>Engineers and Scientists     Complete and Scientists       Type of Big: ATV<br>rg Co::eabcard Drilling<br>man: M. Glynn     Type of Big: ATV<br>Big Model: D-60T<br>Drilling Method: Roatary Wash<br>Drilling Method: Roatary Wash<br>or of Casing OL:D Dia (In.): 4     Boring Location: See Plan<br>Ground Surface Elev. (ft.): 588.1<br>Final Boring Depth (ft.): 33.5<br>Date Start - Finish: 1/132021 - 1/14/<br>1/126/2021       Sampler Type: Automatic Hammer<br>ner Weight (b.): 140<br>mer Fall (in): 30<br>r or Casing OL:D Dia (In.): 4     Sampler D.D. (in.): 2.0<br>Sampler D.D. (in.): 2.0<br>Sampler D.D. (in.): 2.4<br>Reck Core Size: NX     Date<br>Time<br>Time<br>Big Description<br>Reck Core Size: NX       Casing<br>Core<br>(ft.) (in) (in) per 6"     Sample Description<br>per 6"     Type of RQD=97%<br>Sample Description<br>Recent Size Size: NX     The description<br>Size Size: NX       Casing<br>Core<br>(ft.) (in) (in) per 6"     REC=100% RQD=97%<br>Sample Description<br>Retent Size: NX     The description<br>Size Size: NX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                              |                             |                           |                                    |                                   |                                                                              |                                                 |                                 |                                            |                                         |                                      |                                     |                                   |                             |
|                | -                       | Type: Automatic Hammer<br>mmer Vight (lb.): 140       Sampler Type: SS<br>Sampler D.D. (in.): 2.0       Date       Date         ger or Casing O.D./I.D Dia (in.): 4       Sampler D.D. (in.): 2.4       Rock Core Size: NX       1/14/2021       1500         It Blower<br>Prate       Sampler Depth Pen. Rec.<br>(ft.) (in) (in) per 6"       Blows<br>per 6"       SPT<br>Value       Sample Description<br>Modified Burmister       Image: Stratum<br>Body         3:45       3:00       Sample       Field       Image: Stratum<br>Body       Stratum<br>Body       Image: Stratum<br>Body       Stratum<br>Body       Image: Stratum<br>Body       Stratum<br>Body       Image: Stratum<br>Body       Stratum<br>Body       Image: Stratum |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                              |                             |                           |                                    |                                   |                                                                              |                                                 |                                 |                                            |                                         |                                      |                                     |                                   |                             |
| 40             | )                       | End of exploration at 33.5 feet.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                              |                             |                           |                                    |                                   |                                                                              |                                                 |                                 |                                            |                                         |                                      |                                     |                                   |                             |
|                | -                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                              |                             |                           |                                    |                                   |                                                                              |                                                 |                                 |                                            |                                         |                                      |                                     |                                   |                             |
| 4              | -                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                              |                             |                           |                                    |                                   |                                                                              |                                                 |                                 |                                            |                                         |                                      |                                     |                                   |                             |
|                | ' -<br>-                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                              |                             |                           |                                    |                                   |                                                                              |                                                 |                                 |                                            |                                         |                                      |                                     |                                   |                             |
|                | -                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                              |                             |                           |                                    |                                   |                                                                              |                                                 |                                 |                                            |                                         |                                      |                                     |                                   |                             |
| MA 10:1        | ) _                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                              |                             |                           |                                    |                                   |                                                                              |                                                 |                                 |                                            |                                         |                                      |                                     |                                   |                             |
| 0.01 1202/01/  | -                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                              |                             |                           |                                    |                                   |                                                                              |                                                 |                                 |                                            |                                         |                                      |                                     |                                   |                             |
| 55             | 5_                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                              |                             |                           |                                    |                                   |                                                                              |                                                 |                                 |                                            |                                         |                                      |                                     |                                   |                             |
| LIDRARY U      |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                              |                             |                           |                                    |                                   |                                                                              |                                                 |                                 |                                            |                                         |                                      |                                     |                                   |                             |
| L00001         |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                              |                             |                           |                                    |                                   |                                                                              |                                                 |                                 |                                            |                                         |                                      |                                     |                                   |                             |
| 60             | )                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                              |                             |                           |                                    |                                   |                                                                              |                                                 |                                 |                                            |                                         |                                      |                                     |                                   |                             |
|                | 5                       | 5 - Mor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | itoring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | well ins                                     | talled                      | at 28                     | feet. 10 f                         | eet of 2"                         | slotted PVC pipe set betw                                                    | een 18 and                                      | 28 1                            | feet. V                                    | Vell fin                                | ished to g                           | round                               | surface wit                       | h solid PVC pipe.           |
|                | FC                      | Filter sa<br>) feet to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nd pla<br>14 fe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | iced in a<br>et below                        | nnulu<br>grade              | s aroı<br>e. Roa          | und well f<br>adbox inst           | rom 16 fe<br>talled at g          | eet to 28 feet. Bentonite s<br>ground surface.                               | eal from 14                                     | feet                            | to 16                                      | feet be                                 | elow grade                           | e. Auge                             | r spoils (or                      | filter sand) from           |
|                | ratif<br>vel r<br>her f | ication<br>eading<br>factors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | lines r<br>s have<br>than t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | epresen<br>been m<br>hose pre                | t appr<br>nade a<br>esent a | oxima<br>at the<br>at the | te bounda<br>times an<br>times the | aries betv<br>d under<br>e measur | ween soil and bedrock typ<br>the conditions stated. Flu<br>ements were made. | es. Actual tr<br>ctuations o                    | rans<br>of gro                  | itions r<br>oundwa                         | nay be<br>ater m                        | e gradual.<br>ay occur o             | Water<br>due to                     | Explo                             | oration No.:<br>GZ-3        |

|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                      |                                                                 |                                                                 |                                                                                              |                                                                                       | TEST BORIN                                                                                                                                                              | G LOG                                                               |                                    |                                        |                                                                                                      |                                                                   |                                                 |                                     |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------|----------------------------------------|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------|-------------------------------------|
| G                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | GZA<br>GeoEi<br>Inginee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>nviron</b><br>rs and S                                                            | men<br>cienti.                                                  | sts                                                             | Inc.                                                                                         |                                                                                       | University of Conne<br>Mirror Lake Da<br>Storrs, Connecti                                                                                                               | ecticut<br>m<br>cut                                                 |                                    |                                        | EXPLORATIO<br>SHEET:<br>PROJECT NO<br>REVIEWED B                                                     | N NO.: 0<br>1 of 1<br>: 05.0046<br>Y: J. Dav                      | GZ-4<br>161.07<br>is                            |                                     |
| Log<br>Drill<br>Fore | ged By:<br>ling Co.<br>eman:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | S. De<br>Seabo<br>M. Gl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Angelis<br>bard Drilli<br>ynn                                                        | ing                                                             |                                                                 |                                                                                              | Type of<br>Rig Moo<br>Drilling                                                        | Rig: ATV<br>del: D-50T<br>Method: Rotary Wash                                                                                                                           | Boring Lo<br>Ground S<br>Final Bor<br>Date Star                     | ocat<br>Surfa<br>ring<br>rt - F    | tion: S<br>ace Ele<br>Depth<br>Finish: | See Plan<br>sv. (ft.): 579.9<br>(ft.): 29.1<br>1/12/2021 - 1/13                                      | 3/2021                                                            | H. Dat<br>V. Dat                                | um: NAD83<br>um: NAVD88             |
| Ham                  | mer Ty                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>be:</b> Au                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | tomatic                                                                              | Hamr                                                            | ner                                                             |                                                                                              | Sample                                                                                | r Type: SS                                                                                                                                                              |                                                                     |                                    | Data                                   | Groundy                                                                                              | vater Dep                                                         | th (ft.)                                        | Stob Time                           |
| Han<br>Han<br>Aug    | nmer We<br>nmer Fal<br>er or Ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | eight (l<br> l (in.):<br> sing C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | b.): 140<br>30<br>D.D./I.D I                                                         | 0<br>Dia (i                                                     | n.):                                                            | 4                                                                                            | Sample<br>Sample<br>Rock Co                                                           | r O.D. (in.): 2.0<br>r Length (in.): 24<br>ore Size: NX                                                                                                                 |                                                                     | 1/<br>1/                           | 14/202<br>26/202                       | 1 0800<br>1 0800                                                                                     | 1.8                                                               | 9<br>9                                          | 1 day<br>13 days                    |
| Depti<br>(ft)        | Casing<br>Blows/<br>Core                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Depth                                                                                | Samp<br>Pen.                                                    | Rec.                                                            | Blows                                                                                        | SPT<br> Value                                                                         | Sample Descripti<br>Modified Burmist                                                                                                                                    | on<br>er                                                            | emark                              | Field<br>Test                          |                                                                                                      | Elev.<br>(ft.)                                                    |                                                 |                                     |
|                      | Rate<br>9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SS-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0-2                                                                                  | 24                                                              | 4                                                               | 1 2                                                                                          |                                                                                       | SS-1 : Top 4": Topsoil                                                                                                                                                  |                                                                     | 1                                  | Data                                   | TOPSOIL                                                                                              | 579 <b>/6</b>                                                     |                                                 |                                     |
|                      | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                      |                                                                 |                                                                 | 33                                                                                           | 5                                                                                     |                                                                                                                                                                         |                                                                     |                                    |                                        |                                                                                                      | - 🛛                                                               |                                                 |                                     |
|                      | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                      |                                                                 |                                                                 |                                                                                              |                                                                                       |                                                                                                                                                                         |                                                                     |                                    |                                        |                                                                                                      |                                                                   |                                                 |                                     |
| 5 _                  | $5 \begin{array}{c} 51\\ 5\\ -\\ 70\\ -\\ 88\\ 79\end{array} \begin{array}{c} SS-3\\ -\\ 79\end{array} \begin{array}{c} 4-6\\ -\\ 79\end{array} \begin{array}{c} 24\\ -\\ 79\end{array} \begin{array}{c} 17\\ -\\ 78\end{array} \begin{array}{c} 9\\ 8\\ -\\ 79\end{array} \begin{array}{c} 70\\ -\\ 78\end{array} \begin{array}{c} 78\end{array} \begin{array}{c} 70\\ -\\ 78\end{array} \begin{array}{c} 78$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                      |                                                                 |                                                                 |                                                                                              |                                                                                       |                                                                                                                                                                         |                                                                     |                                    |                                        |                                                                                                      |                                                                   | ľ                                               | Auger Spoils                        |
|                      | - 88<br>- 79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SS-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6-8                                                                                  | 24                                                              | 11                                                              | 8 13<br>17 17                                                                                |                                                                                       |                                                                                                                                                                         |                                                                     |                                    | -                                      | (0'-11')<br>—2" PVC Riser<br>(0-14')                                                                 |                                                                   |                                                 |                                     |
| 10 _                 | 49<br>103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SS-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8-10                                                                                 | 24                                                              | 10                                                              | 20 18<br>13 11                                                                               | 31                                                                                    | SS-5 : Dense, grey, fine<br>SAND and GRAVEL, littl                                                                                                                      | to coarse<br>e Silt                                                 |                                    |                                        |                                                                                                      |                                                                   |                                                 |                                     |
|                      | - 76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SS-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10-12                                                                                | 24                                                              | 13                                                              | 9 11<br>11 33                                                                                | 22                                                                                    | SS-6 : Medium dense, g<br>to coarse SAND and GR<br>little Silt                                                                                                          | rey, fine<br>AVEL,                                                  |                                    |                                        |                                                                                                      |                                                                   | -                                               | Bentonite Chips<br>(11'-12')        |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SS-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12-14                                                                                | 24                                                              | 15                                                              | 12 13<br>15 18                                                                               | 28                                                                                    | SS-7 : Medium dense, g<br>to medium SAND, some                                                                                                                          | rey, fine<br>Silt, little                                           |                                    |                                        |                                                                                                      |                                                                   |                                                 | ()                                  |
| 15 _                 | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SS-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 14-16                                                                                | 24                                                              | 15                                                              | 14 16<br>12 14                                                                               | 28                                                                                    | SS-8 : Medium dense, gi<br>to coarse SAND, little fin                                                                                                                   | rey, fine<br>e Gravel,                                              |                                    |                                        | GLACIAL TILL                                                                                         |                                                                   |                                                 |                                     |
|                      | - 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 55-9<br>55 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10-18                                                                                | 24                                                              | 14                                                              | 19 23<br>22 30                                                                               | 45                                                                                    | little Silt<br>SS-9 : Dense, grey, brov<br>SAND. little fine Gravel.                                                                                                    | /n, fine<br>little Silt                                             |                                    |                                        |                                                                                                      |                                                                   |                                                 | Filter Sand (12'-24')               |
| WH 06: 20 _          | - 12<br>- 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SS-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10-<br>19.8<br>20-                                                                   | 11                                                              | 7                                                               | 51 50/4                                                                                      | " 84<br>"                                                                             | SS-10 : Very dense, brow<br>to medium SAND, trace                                                                                                                       | vn, fine<br>Silt                                                    |                                    |                                        |                                                                                                      |                                                                   |                                                 | —Screen (14'-24')                   |
| 11. 1.Z0Z/G1/4       | 9<br>15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SS-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20.9<br>22-                                                                          | 11                                                              | 7                                                               | 30 50/5                                                                                      |                                                                                       | SAND, trace Silt                                                                                                                                                        | edium                                                               |                                    |                                        |                                                                                                      |                                                                   |                                                 |                                     |
| 012111.GLB           | 5:30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SS-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 22.9<br>24-                                                                          | 1                                                               | 0                                                               | 50/1"                                                                                        |                                                                                       | SAND, trace Silt                                                                                                                                                        | odium                                                               | 2                                  |                                        | <u>24.1</u>                                                                                          | 555.8                                                             |                                                 |                                     |
| 25 _                 | 3:45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 24.1<br>24.1-                                                                        | 60                                                              | 49                                                              | 00/1                                                                                         |                                                                                       | C-1 : Hard, very slight we<br>slightly fractured, fine to                                                                                                               | eathering,<br>medium                                                | 3                                  |                                        |                                                                                                      |                                                                   |                                                 |                                     |
| 16 LOGS.GP           | 4:45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 29.1                                                                                 |                                                                 |                                                                 |                                                                                              |                                                                                       | grained, grey GNEISS<br>REC=82% RQD=77%                                                                                                                                 |                                                                     | Δ                                  |                                        | BEDROCK                                                                                              |                                                                   |                                                 |                                     |
| 30 _                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                      |                                                                 |                                                                 |                                                                                              |                                                                                       | End of exploration at 29.                                                                                                                                               | 1 feet.                                                             |                                    |                                        | 29.1                                                                                                 | 550.8                                                             |                                                 |                                     |
|                      | 1 - Test<br>Ground<br>2 - Roll<br>3 - NX-<br>4 - Mor<br>Filter sa<br>0 feet to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | boring<br>surfac<br>erbit re<br>sized, o<br>itoring<br>and pla<br>o 11 fe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | g advanc<br>ce elevat<br>fusal en<br>double-tu<br>well inst<br>ced in at<br>et below | eed wi<br>ion es<br>count<br>ube co<br>talled<br>nnulu<br>grade | th 4-ii<br>stimat<br>ered<br>ore ba<br>at 24<br>s arou<br>e. Ro | nch diame<br>ed by sun<br>at about 2<br>arrel used<br>feet. 10 f<br>und well fr<br>adbox ins | ter casin<br>veying us<br>4 feet.<br>to core b<br>eet of 2"<br>rom 12 fe<br>talled at | g and rotary wash drilling<br>sing existing spillway crest<br>wedrock. Core times in un<br>slotted PVC pipe set betw<br>set to 24 feet. Bentonite se<br>ground surface. | methods.<br>as benchn<br>its of min/fo<br>een 14 and<br>eal from 11 | Cas<br>nark<br>oot.<br>d 24<br>fee | RQD =<br>feet. \<br>t to 12            | ws per foot provi<br>4.88 ft) and refe<br>= Rock Quality D<br>Well finished to g<br>feet below grade | ded in Cas<br>rences N/<br>esignatior<br>jound surf<br>. Auger sp | sing Blow<br>AVD88.<br>ace with<br>poils (or fi | solid PVC pipe.<br>ilter sand) from |
| level<br>othe        | reading<br>r factors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | End of exploration at 29.1 feet.         'est boring advanced with 4-inch diameter casing and rotary wash drilling methods. Casing blows per foot provid<br>und surface elevation estimated by surveying using existing spillway crest as benchmark (El. 584.88 ft) and refere<br>collerbit refusal encountered at about 24 feet.         IX-sized, double-tube core barrel used to core bedrock. Core times in units of min/foot. RQD = Rock Quality De<br>Anitoring well installed at 24 feet. 10 feet of 2" slotted PVC pipe set between 14 and 24 feet. Well finished to go<br>r sand placed in annulus around well from 12 feet to 24 feet. Bentonite seal from 11 feet to 12 feet below grade.<br>et to 11 feet below grade. Roadbox installed at ground surface.         ion lines represent approximate boundaries between soil and bedrock types. Actual transitions may be gradual. V<br>ings have been made at the times and under the conditions stated. Fluctuations of groundwater may occur dr<br>ors than those present at the times the measurements were made. |                                                                                      |                                                                 |                                                                 |                                                                                              |                                                                                       |                                                                                                                                                                         |                                                                     |                                    |                                        |                                                                                                      |                                                                   |                                                 | GZ-4                                |



**APPENDIX D – LABORATORY TEST RESULTS** 



| Client:     | GZA GeoEr   | nvironmental,  | Inc.           |            |             |            |
|-------------|-------------|----------------|----------------|------------|-------------|------------|
| Project:    | Mirror Lake | e Dam          |                |            |             |            |
| Location:   | Storrs, CT  |                |                |            | Project No: | GTX-313166 |
| Boring ID:  | GZ-1        |                | Sample Type:   | bag        | Tested By:  | ckg        |
| Sample ID:  | SS-2        |                | Test Date:     | 02/10/21   | Checked By: | bfs        |
| Depth :     | 2-4         |                | Test Id:       | 609963     |             |            |
| Test Comm   | ent:        |                |                |            |             |            |
| Visual Desc | ription:    | Moist, dark ye | ellowish brown | silty sand |             |            |
| Sample Cor  | mment:      |                |                |            |             |            |
|             |             |                |                |            |             |            |



|            | % Cobb             | le        | %(        | Gravel       |          | % Sand |                 | %Si            | lt & Clay Size                  |    |
|------------|--------------------|-----------|-----------|--------------|----------|--------|-----------------|----------------|---------------------------------|----|
|            |                    |           | 10        | ).6          |          | 49.6   |                 |                | 39.8                            |    |
| Sieve Name | Sieve Size, mm     | Percent I | Finer Spe | ec. Percent  | Complies | 1      |                 | Coe            | fficients                       |    |
|            |                    |           |           |              |          |        | $D_{85} = 1.88$ | 40 mm          | $D_{30} = 0.0407 \text{ mm}$    |    |
| 0.5 in     | 12.50              | 100       |           |              |          |        | $D_{60} = 0.22$ | 33 mm          | D <sub>15</sub> =0.0106 mm      |    |
| 0.375 in   | 9.50               | 93        |           |              |          | -      | $D_{50} = 0.12$ | 75 mm          | $D_{10} = 0.0052 \text{ mm}$    |    |
| #4         | 4.75               | 89        |           |              |          | -      | $D_{50} = 0.13$ | 75 1111        | $D_{10} = 0.0052$ mm            |    |
| #10        | 0.85               | 79        |           |              |          | -      | $C_{u} = 42.9$  | 42             | C <sub>c</sub> =1.427           |    |
| #40        | 0.42               | 71        |           |              |          | -      |                 | Class          | sification                      | -  |
| #60        | 0.25               | 62        |           |              |          | -      | <u>ASTM</u>     | N/A            |                                 |    |
| #100       | 0.15               | 52        |           |              |          | -      |                 |                |                                 |    |
| #140       | 0.11               | 45        |           |              |          | -      |                 | Cilty Coile (/ | $\Lambda$ $\Lambda$ $(\Omega))$ |    |
| #200       | 0.075              | 40        |           |              |          |        | AASHIU          | Sitty Solis (A | 4-4 (0))                        |    |
| Hydrometer | Particle Size (mm) | Percent F | iner S    | pec. Percent | Complies | 1      |                 |                |                                 |    |
|            | 0.0322             | 26        |           |              |          |        |                 | Sample/Te      | est Description                 |    |
|            | 0.0215             | 22        |           |              |          |        | Sand/Grav       | vel Particle S | hape : ANGULAR                  |    |
|            | 0.0126             | 16        |           |              |          |        | Sand/Grav       | vel Hardness   | · HARD                          |    |
|            | 0.0092             | 14        |           |              |          |        |                 |                |                                 |    |
|            | 0.0066             | 12        |           |              |          | -      | Dispersion      | n Device : Ap  | paratus A - Mech Mixe           | er |
|            | 0.0047             | 9         |           |              |          | 4      | Dispersion      | n Period : 1 n | ninute                          |    |
|            | 0.0034             | 6         |           |              |          | -      | Est Speci       | fic Gravity    | 2 65                            |    |
|            | 0.0014             | 0         |           |              |          | -      |                 | ne cravity     | 2.00                            |    |
|            |                    |           |           |              |          |        | Separatio       | n of Sample:   | #200 Sieve                      |    |



| Client:     | GZA GeoEr   | nvironmental, I | nc.             |            |             |            |
|-------------|-------------|-----------------|-----------------|------------|-------------|------------|
| Project:    | Mirror Lake | e Dam           |                 |            |             |            |
| Location:   | Storrs, CT  |                 |                 |            | Project No: | GTX-313166 |
| Boring ID:  | GZ-1        |                 | Sample Type:    | bag        | Tested By:  | ckg        |
| Sample ID:  | SS-6        |                 | Test Date:      | 02/11/21   | Checked By: | bfs        |
| Depth :     | 12-14       |                 | Test Id:        | 609964     |             |            |
| Test Comm   | ent:        |                 |                 |            |             |            |
| Visual Desc | ription:    | Moist, olive gr | ay silty sand w | ith gravel |             |            |
| Sample Cor  | mment:      |                 |                 |            |             |            |
|             | •           |                 | A O T N A       |            | 0 / 5 7 0   | ~~         |





| Client:     | GZA GeoEr   | nvironmental,   | Inc.            |          |             |            |
|-------------|-------------|-----------------|-----------------|----------|-------------|------------|
| Project:    | Mirror Lake | e Dam           |                 |          |             |            |
| Location:   | Storrs, CT  |                 |                 |          | Project No: | GTX-313166 |
| Boring ID:  | GZ-2        |                 | Sample Type:    | bag      | Tested By:  | ckg        |
| Sample ID:  | SS-3        |                 | Test Date:      | 02/10/21 | Checked By: | bfs        |
| Depth :     | 4-6         |                 | Test Id:        | 609965   |             |            |
| Test Comm   | ent:        |                 |                 |          |             |            |
| Visual Desc | ription:    | Moist, dark oli | ive gray clayey | sand     |             |            |
| Sample Cor  | mment:      |                 |                 |          |             |            |
|             |             |                 |                 |          |             |            |



Sand/Gravel Hardness : HARD

Dispersion Period : 1 minute

Separation of Sample: #200 Sieve

Est. Specific Gravity: 2.65

Dispersion Device : Apparatus A - Mech Mixer

0.0068

0.0048

0.0034

0.0015

8

7

4

2



| Client:     | GZA GeoE   | nvironmental,   | Inc.            |          |             |            |
|-------------|------------|-----------------|-----------------|----------|-------------|------------|
| Project:    | Mirror Lak | e Dam           |                 |          |             |            |
| Location:   | Storrs, CT |                 |                 |          | Project No: | GTX-313166 |
| Boring ID:  | GZ-3       |                 | Sample Type:    | bag      | Tested By:  | ckg        |
| Sample ID:  | : SS-4     |                 | Test Date:      | 02/11/21 | Checked By: | bfs        |
| Depth :     | 6-8        |                 | Test Id:        | 609966   |             |            |
| Test Comm   | ent:       |                 |                 |          |             |            |
| Visual Desc | cription:  | Moist, olive br | rown silty sand |          |             |            |
| Sample Co   | mment:     |                 |                 |          |             |            |
|             |            |                 |                 |          |             |            |



| Sieve Name | Sieve Size, mm     | Percent Finer | Spec. Percent | Complies |                         | Coe           | fficients                    |
|------------|--------------------|---------------|---------------|----------|-------------------------|---------------|------------------------------|
|            |                    |               |               |          | D <sub>85</sub> = 0.755 | 50 mm         | D <sub>30</sub> =0.0298 mm   |
| 0.375 in   | 9.50               | 100           |               |          | $D_{co} = 0.158$        | 32 mm         | $D_{15} = 0.0052 \text{ mm}$ |
| #4         | 4.75               | 95            |               |          | 0.130                   | 52 11111      | B15-0.0032 mm                |
| #10        | 2.00               | 91            |               |          | $D_{50} = 0.098$        | 39 mm         | D <sub>10</sub> =0.0021 mm   |
| #20        | 0.85               | 86            |               |          | C <sub>u</sub> =75.33   | 33            | C <sub>c</sub> =2.673        |
| #40        | 0.42               | 78            |               |          |                         | 01            | - 161 +1                     |
| #60        | 0.25               | 69            |               |          | ASTM                    | NI/A Clas     | sification                   |
| #100       | 0.15               | 59            |               |          | ASTIV                   | N/A           |                              |
| #140       | 0.11               | 51            |               |          |                         |               |                              |
| #200       | 0.075              | 45            |               |          | ΔΔΩΗΤΟ                  | Silty Soils ( | $A_{-4}(0)$                  |
| Hydrometer | Particle Size (mm) | Percent Finer | Spec. Percent | Complies | AASITIO                 | Sincy Solis ( | A-4 (0))                     |
|            | 0.0315             | 31            |               |          |                         |               |                              |
|            | 0.0214             | 26            |               |          |                         | Sample/T      | est Description              |
|            | 0.0126             | 22            |               |          | Sand/Grav               | el Particle S | Shape : ANGULAR              |
|            | 0.0091             | 19            |               |          | Sand/Cray               | allardnaar    |                              |
|            | 0.0065             | 17            |               |          | Sanu/Grav               | rel Haruness  | S : HARD                     |
|            | 0.0046             | 14            |               |          | Dispersion              | Device : Ap   | oparatus A - Mech Mixer      |
|            | 0.0033             | 12            |               |          |                         | Period · 1    | minute                       |
|            | 0.0014             | 9             |               |          | Dispersion              |               |                              |
|            |                    |               |               |          | Est. Specif             | ic Gravity :  | 2.65                         |
|            |                    |               |               |          | Separation              | of Sample:    | #200 Sieve                   |



| Client:     | GZA GeoEr   | nvironmental, I | nc.             |            |             |            |
|-------------|-------------|-----------------|-----------------|------------|-------------|------------|
| Project:    | Mirror Lake | e Dam           |                 |            |             |            |
| Location:   | Storrs, CT  |                 |                 |            | Project No: | GTX-313166 |
| Boring ID:  | GZ-3        |                 | Sample Type:    | bag        | Tested By:  | ckg        |
| Sample ID:  | SS-8        |                 | Test Date:      | 02/11/21   | Checked By: | bfs        |
| Depth :     | 14-16       |                 | Test Id:        | 609967     |             |            |
| Test Comm   | ent:        |                 |                 |            |             |            |
| Visual Desc | ription:    | Moist, olive gr | ay silty sand w | ith gravel |             |            |
| Sample Cor  | mment:      |                 |                 |            |             |            |
|             |             |                 |                 | _ / _ /    |             |            |





|   | Client:     | GZA GeoEr   | nvironmental, I | nc.            |             |                 |            |
|---|-------------|-------------|-----------------|----------------|-------------|-----------------|------------|
|   | Project:    | Mirror Lake | e Dam           |                |             |                 |            |
|   | Location:   | Storrs, CT  |                 |                |             | Project No:     | GTX-313166 |
|   | Boring ID:  | GZ-4        |                 | Sample Type:   | bag         | Tested By:      | ckg        |
|   | Sample ID:  | SS-4        |                 | Test Date:     | 02/10/21    | Checked By:     | bfs        |
|   | Depth :     | 6-8         |                 | Test Id:       | 609968      |                 |            |
|   | Test Comm   | ent:        |                 |                |             |                 |            |
|   | Visual Desc | ription:    | Moist, olive gr | ay clayey sand | with gravel |                 |            |
|   | Sample Cor  | nment:      |                 |                |             |                 |            |
|   | <u> </u>    |             |                 |                |             |                 |            |
| _ |             | · · · · · · |                 | ~ ~            |             | * * / * * / / * |            |





**APPENDIX E – BEDROCK CORE PHOTOGRAPHS** 



#### Mirror Lake Dam Storrs, Connecticut Rock Core Photographs

| Boring No.           | Run                  | Depth (ft)      |     | Recovery Recovery<br>(in) (%) |    | RQD (in) | RQD (%) | Rock Type | Core Box<br>Row Number |   |
|----------------------|----------------------|-----------------|-----|-------------------------------|----|----------|---------|-----------|------------------------|---|
| GZ-2                 | C-1                  | C-1 19.8 - 24.8 |     | 43                            | 72 | 41       | 68      | Gneiss    | 1                      |   |
| GZ-1                 | C-1                  | 7               | -   | 8.5                           | 15 | 83       | 15      | 83        | Boulder                | 2 |
| GZ-4                 | GZ-4 C-1 24.1 - 29.1 |                 | 49  | 82                            | 46 | 77       | Gneiss  | 3         |                        |   |
| GZ-3 C-1 28.5 - 33.5 |                      | 60              | 100 | 58                            | 97 | Gneiss   | 4       |           |                        |   |





Notes:

- 1. Table row corresponds to the core box section in which the rock core sample is contained; Table Row 1=Top of Core Box, Table Row 4=Bottom of Core Box.
- 2. Top of rock core is to the left, bottom is to the right.
- 3. Top photo is dry, bottom photo is wetted.

Page 1 of 1



APPENDIX F – SUBWATERSHED MAP



## **CAMPUS DRAINAGE MASTERPLAN**

Volume I of VI

Eagleville Brook and Roberts Brook Watersheds University of Connecticut Storrs, Connecticut Project #901950

# UNIVERSITY OF CONNECTICUT

# DRAFT

February 13, 2018

## BVH INTEGRATED SERVICES, P.C.

50 Griffin Road South, Bloomfield, CT 06002 ph. (860) 286-9171

One Gateway Center, Suite 701, Newton, MA 02458 ph. (617) 658-9008

www.bvhis.com





### **APPENDIX G – MATERIAL PROPERTIES CALCULATIONS**



## Correlation of SPT-N Values to $\phi$ Worksheet

| Project:       | 05.004616   | 1.07 - Mirror Lake Dam |       |           |
|----------------|-------------|------------------------|-------|-----------|
| Location:      | Storrs, Cor | necticut               |       |           |
| Calculated By: |             | EK                     | Date: | 2/11/2021 |
| Checked By:    |             | JD                     | Date: | 2/28/2021 |

| Purpose:      | To estimate $\phi$ value for granular soils encountered in test borings, using three correlations (attached). Correlations are made using N <sub>field</sub> and (N1) <sub>60</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| References:   | <ol> <li>Peck, Hanson, and Thornburn; "Foundation Engineering" 2nd ed., Wiley, New York, 1974</li> <li>M.Carter and S.P.Bentley (1991), Correlations of soil properties, Pentech Press Publishers,<br/>London, UK</li> <li>Hatanaka, M., Uchida, A. (1996). Empirical correlation between penetration resistance and<br/>effective friction of sandy soil. Soils &amp; Foundations, Vol. 36 (4), 1-9, Japanese Geotechnical Society.</li> </ol>                                                                                                                                                                                                                                                                                                                                                              |
| Instructions: | <ul> <li>Create separate tab for each boring, add/delete rows to accommodate boring depth</li> <li>Edit "Strata" column on right side of sheet to correspond with boring log, denote granular strata with S1, S2SN</li> <li>Input CE value in cell B6 from table on right side of sheet, CB and CS values correspond to borehole diameters and sampler configurations, and are not likely to change</li> <li>Input groundwater level in cell B9. Use bottom of borehole if none encountered.</li> <li>User input required in columns A, C, J, and P. Also, ground surface elevation (if known) in cell C11</li> <li>Copy cells K12:O12 and paste at each sample depth.</li> <li>Update/edit formulas at bottom of sheet to average f values for each strata, transfer value(s) to "Summary" sheet</li> </ul> |

#### Assumptions:

**Results:** See attached sheets

|                 | SPT-Based |
|-----------------|-----------|
| Strata          | Selected  |
| Embankment Fill | 29 °      |
| Fill            | 30 °      |
| Glacial Till    | 38 °      |

| Boring ID:     | GZ-1    |             |                 |           |              |                 |            |          |                    |                 |                                 |                         |                      |             |         |                |
|----------------|---------|-------------|-----------------|-----------|--------------|-----------------|------------|----------|--------------------|-----------------|---------------------------------|-------------------------|----------------------|-------------|---------|----------------|
| CE             | 1.20    | (Automatic) |                 |           |              |                 |            |          |                    |                 |                                 |                         |                      |             |         |                |
| CB             | 1.0     | (borehole d | liameter 60-115 | mm)       |              |                 |            |          |                    |                 |                                 |                         |                      |             |         |                |
| CS             | 1.0     | (sampler wi | ithout liner)   |           |              |                 |            |          |                    |                 |                                 | Carter & Bentley        |                      |             |         |                |
| gw level (ft): | 7       | (below grou | und surface)    |           |              |                 |            |          |                    |                 |                                 | (1991)                  | PH&T 1974            |             |         |                |
| Depth (feet)   | Elev in | Unit        | Stress          | Total     | Pore         | Effective       | Cn         | Cr       | N <sub>field</sub> | N <sub>60</sub> | (N <sub>1</sub> ) <sub>60</sub> | Φ' based on             | Φ' based on          | Estimated   | Strata  | Depth for      |
|                | ft      | Weight      | Increment       | Stress    | Water        | Stress ov'      |            |          | (blows/ft)         | (blows/ft)      | (blows/ft)                      | N <sub>field</sub> < 70 | Min. Value of        | Fines       |         | C <sub>R</sub> |
|                | (NAVD   | (pcf)       | (psf)           | (psf)     | Pressure     | (tsf)           |            |          |                    |                 |                                 |                         | N <sub>60</sub> < 73 | Content (%) |         | (meters)       |
|                | 88)     |             |                 |           | (psf)        |                 |            |          |                    |                 |                                 |                         |                      |             |         |                |
| 0.0            | 588     | 120         | 0               | 0         | 0            | 0.0000          | -          | 0.75     |                    |                 |                                 |                         |                      |             | ASPHALT | 0.00           |
| 1.0            | 587.0   | 120         | 120             | 120       | 0            | 0.0600          | 1.70       | 0.75     | 5                  | 5               | 8                               | 28.5                    | 28.5                 |             | Ł       | 0.30           |
| 2.0            | 586.0   | 120         | 120             | 240       | 0            | 0.1200          | 1.70       | 0.75     |                    |                 |                                 |                         |                      |             | W,      | 0.61           |
| 3.0            | 585.0   | 120         | 120             | 360       | 0            | 0.1800          | 1.70       | 0.75     | 8                  | 7               | 12                              | 29.5                    | 29.3                 |             | ž 문     | 0.91           |
| 4.0            | 584.0   | 120         | 120             | 480       | 0            | 0.2400          | 1.70       | 0.75     |                    |                 |                                 |                         |                      |             | AB/     | 1.22           |
| 5.0            | 583.0   | 120         | 120             | 600       | 0            | 0.3000          | 1.70       | 0.75     | 15                 | 14              | 23                              | 31.5                    | 31.3                 |             | ũ       | 1.52           |
| 6.0            | 582.0   | 120         | 120             | 720       | 0            | 0.3600          | 1.67       | 0.75     |                    |                 |                                 |                         |                      |             |         | 1.83           |
| 7.0            | 581.0   | 120         | 120             | 840       | 0            | 0.4200          | 1.54       | 0.75     |                    |                 |                                 |                         |                      |             | AL R    | 2.13           |
| 8.0            | 580.0   | 120         | 120             | 960       | 62.4         | 0.4488          | 1.49       | 0.75     |                    |                 |                                 |                         |                      |             | 8≷      | 2.44           |
| 9.0            | 579.0   | 120         | 120             | 1080      | 124.8        | 0.4776          | 1.45       | 0.75     |                    |                 |                                 |                         |                      |             |         | 2.74           |
| 10.0           | 578.0   | 120         | 120             | 1200      | 187.2        | 0.5064          | 1.41       | 0.80     |                    |                 |                                 |                         |                      |             |         | 3.05           |
| 11.0           | 577.0   | 120         | 120             | 1320      | 249.6        | 0.5352          | 1.37       | 0.80     | 29                 | 28              | 38                              | 35.8                    | 35.5                 |             |         | 3.35           |
| 12.0           | 576.0   | 120         | 120             | 1440      | 312          | 0.5640          | 1.33       | 0.80     |                    |                 |                                 |                         |                      |             |         | 3.66           |
| 13.0           | 575.0   | 120         | 120             | 1560      | 374.4        | 0.5928          | 1.30       | 0.80     | 40                 | 38              | 50                              | 38.8                    | 38.3                 |             |         | 3.96           |
| 14.0           | 574.0   | 120         | 120             | 1680      | 436.8        | 0.6216          | 1.27       | 0.85     |                    |                 |                                 |                         |                      |             |         | 4.27           |
| 15.0           | 573.0   | 120         | 120             | 1800      | 499.2        | 0.6504          | 1.24       | 0.85     | 40                 | 41              | 51                              | 38.8                    | 39.0                 |             |         | 4.57           |
| 16.0           | 572.0   | 120         | 120             | 1920      | 561.6        | 0.6792          | 1.21       | 0.85     |                    |                 |                                 |                         |                      |             | 1       | 4.88           |
| 17.0           | 571.0   | 120         | 120             | 2040      | 624          | 0.7080          | 1.19       | 0.85     | 24                 | 24              | 29                              | 34.3                    | 34.3                 |             | 5       | 5.18           |
| 18.0           | 570.0   | 120         | 120             | 2160      | 686.4        | 0.7368          | 1.16       | 0.85     |                    |                 |                                 |                         |                      |             | CIA     | 5.49           |
| 19.0           | 569.0   | 120         | 120             | 2280      | 748.8        | 0.7656          | 1.14       | 0.85     | 61                 | 62              | 71                              | 42.8                    | 43.0                 |             | BLA     | 5.79           |
| 20.0           | 568.0   | 120         | 120             | 2400      | 811.2        | 0.7944          | 1.12       | 0.95     |                    |                 |                                 |                         |                      |             | Ŭ       | 6.10           |
| 21.0           | 567.0   | 120         | 120             | 2520      | 873.6        | 0.8232          | 1.10       | 0.95     | 26                 | 30              | 33                              | 34.8                    | 36.0                 |             |         | 6.40           |
| 22.0           | 566.0   | 120         | 120             | 2640      | 936          | 0.8520          | 1.08       | 0.95     |                    | 40              | 40                              | 00.0                    | 20.5                 |             |         | 6.71           |
| 23.0           | 565.0   | 120         | 120             | 2760      | 998.4        | 0.8808          | 1.07       | 0.95     | 38                 | 43              | 46                              | 38.3                    | 39.5                 |             |         | 7.01           |
| 24.0           | 564.0   | 120         | 120             | 2880      | 1060.8       | 0.9096          | 1.05       | 0.95     |                    |                 |                                 |                         |                      |             |         | 7.32           |
| 25.0           | 563.0   | 120         | 120             | 3000      | 1123.2       | 0.9384          | 1.03       | 0.95     |                    |                 |                                 |                         |                      |             |         | 7.62           |
| 20.0           | 562.5   | 120         | 60              | 3060      | 1154.4       | 0.9526          | 1.02       | 0.95     |                    |                 |                                 |                         |                      |             |         | 1.11           |
|                |         | Detter      | o of Doring (   | 3) OF F   |              |                 |            |          |                    |                 |                                 |                         |                      |             |         |                |
|                |         | BUILUI      | I UI BUIIIg @   | e 20.0    |              |                 |            |          |                    |                 |                                 |                         |                      |             |         |                |
|                |         |             |                 |           |              |                 |            |          |                    | S1 A            | verage #' -                     | 20.9                    | 20.7                 |             |         |                |
| Notor          |         |             |                 |           |              |                 |            |          |                    | S2 A            | verage $\psi' =$                | 23.0                    | 23.7                 |             |         |                |
| NOLES.         | 100     | number      | aquires man     | ual input |              |                 |            |          |                    | 52 A            | το age ψ =                      | 51.0                    | 33.5                 | I           |         |                |
|                | 25      | aroundu     | equires man     | nat moor  | urad usal    | ottom of ho     | ring donth | instead) |                    |                 |                                 |                         |                      |             |         |                |
|                | 20      | groundw     | ater table (If  | not meas  | surea, use i | DOLLOTITI OF DO | nng deptr  | instead) |                    |                 |                                 |                         |                      |             |         |                |

| Boring ID:     | GZ-2    |             |                 |        |          |            |      |      |                    |                 |                                 |                         |                      |             |          |           |
|----------------|---------|-------------|-----------------|--------|----------|------------|------|------|--------------------|-----------------|---------------------------------|-------------------------|----------------------|-------------|----------|-----------|
| CE             | 1.20    | (Automatic  | )               |        |          |            |      |      |                    |                 |                                 |                         |                      |             |          |           |
| CB             | 1.0     | (borehole c | liameter 60-115 | imm)   |          |            |      |      |                    |                 |                                 |                         |                      |             |          |           |
| CS             | 1.0     | (sampler w  | ithout liner)   |        |          |            |      |      |                    |                 |                                 | Carter & Bentley        | ,                    |             |          |           |
| gw level (ft): | 3.25    | (below grou | und surface)    |        |          |            |      |      |                    |                 |                                 | (1991)                  | PH&T 1974            |             |          |           |
| Depth (feet)   | Elev in | Unit        | Stress          | Total  | Pore     | Effective  | Cn   | Cr   | N <sub>field</sub> | N <sub>60</sub> | (N <sub>1</sub> ) <sub>60</sub> | Φ' based on             | Φ' based on          | Estimated   | Strata   | Depth for |
|                | ft      | Weight      | Increment       | Stress | Water    | Stress ov' |      |      | (blows/ft)         | (blows/ft)      | (blows/ft)                      | N <sub>field</sub> < 70 | Min. Value of        | Fines       |          | CR        |
|                | (NAVD   | (pcf)       | (psf)           | (psf)  | Pressure | (tsf)      |      |      |                    |                 |                                 |                         | N <sub>60</sub> < 73 | Content (%) |          | (meters)  |
|                | 88)     |             |                 |        | (psf)    |            |      |      |                    |                 |                                 |                         |                      |             |          |           |
| 0.0            | 582.9   | 120         | 0               | 0      | 0        | 0.0000     | -    | 0.75 |                    |                 |                                 |                         |                      |             | TOPSOIL  | 0.00      |
| 1.0            | 581.9   | 120         | 120             | 120    | 0        | 0.0600     | 1.70 | 0.75 | 16                 | 14              | 24                              | 31.8                    | 31.3                 |             |          | 0.30      |
| 2.0            | 580.9   | 120         | 120             | 240    | 0        | 0.1200     | 1.70 | 0.75 |                    |                 |                                 |                         |                      |             |          | 0.61      |
| 3.0            | 579.9   | 120         | 120             | 360    | 0        | 0.1800     | 1.70 | 0.75 | 3                  | 3               | 5                               | 28.0                    | 28.0                 |             | Ξ        | 0.91      |
| 4.0            | 578.9   | 120         | 120             | 480    | 46.8     | 0.2166     | 1.70 | 0.75 |                    |                 |                                 |                         |                      |             | Ē        | 1.22      |
| 5.0            | 577.9   | 120         | 120             | 600    | 109.2    | 0.2454     | 1.70 | 0.75 | 5                  | 5               | 8                               | 28.5                    | 28.5                 |             |          | 1.52      |
| 6.0            | 576.9   | 120         | 120             | 720    | 171.6    | 0.2742     | 1.70 | 0.75 |                    |                 |                                 |                         |                      |             |          | 1.83      |
| 7.0            | 575.9   | 120         | 120             | 840    | 234      | 0.3030     | 1.70 | 0.75 | 43                 | 39              | 66                              | 39.5                    | 38.5                 |             |          | 2.13      |
| 8.0            | 574.9   | 120         | 120             | 960    | 296.4    | 0.3318     | 1.70 | 0.75 |                    |                 |                                 |                         |                      |             |          | 2.44      |
| 9.0            | 573.9   | 120         | 120             | 1080   | 358.8    | 0.3606     | 1.67 | 0.75 | 40                 | 36              | 60                              | 38.8                    | 37.5                 |             |          | 2.74      |
| 10.0           | 572.9   | 120         | 120             | 1200   | 421.2    | 0.3894     | 1.60 | 0.80 |                    |                 |                                 |                         |                      |             |          | 3.05      |
| 11.0           | 571.9   | 120         | 120             | 1320   | 483.6    | 0.4182     | 1.55 | 0.80 | 21                 | 20              | 31                              | 33.5                    | 33.3                 |             | 긑        | 3.35      |
| 12.0           | 570.9   | 120         | 120             | 1440   | 546      | 0.4470     | 1.50 | 0.80 |                    |                 |                                 |                         |                      |             | - F      | 3.66      |
| 13.0           | 569.9   | 120         | 120             | 1560   | 608.4    | 0.4758     | 1.45 | 0.80 | 45                 | 43              | 63                              | 39.8                    | 39.5                 |             | <b>V</b> | 3.96      |
| 14.0           | 568.9   | 120         | 120             | 1680   | 670.8    | 0.5046     | 1.41 | 0.85 |                    |                 |                                 |                         |                      |             | -B       | 4.27      |
| 15.0           | 567.9   | 120         | 120             | 1800   | 733.2    | 0.5334     | 1.37 | 0.85 | 53                 | 54              | 74                              | 41.3                    | 41.8                 |             |          | 4.57      |
| 16.0           | 566.9   | 120         | 120             | 1920   | 795.6    | 0.5622     | 1.33 | 0.85 |                    |                 |                                 |                         |                      |             |          | 4.88      |
| 17.0           | 565.9   | 120         | 120             | 2040   | 858      | 0.5910     | 1.30 | 0.85 | 84                 | 86              | 111                             | N/A                     | N/A                  |             |          | 5.18      |
| 18.5           | 564.4   | 120         | 180             | 2220   | 951.6    | 0.6342     | 1.26 | 0.85 |                    |                 |                                 |                         |                      |             |          | 5.64      |
|                |         |             | Rock core       |        |          |            |      |      |                    |                 |                                 |                         |                      |             |          |           |
| 19.5           | 563.4   | 150         | 150             | 2370   | 1014     | 0.6780     |      |      |                    |                 |                                 |                         |                      |             | <u> </u> |           |
| 20.5           | 562.4   | 150         | 150             | 2520   | 1076.4   | 0.7218     |      |      |                    |                 |                                 |                         |                      |             | ò        |           |
| 21.5           | 561.4   | 150         | 150             | 2670   | 1138.8   | 0.7656     |      |      |                    |                 |                                 |                         |                      |             | Ř        |           |
| 22.5           | 560.4   | 150         | 150             | 2820   | 1201.2   | 0.8094     |      |      |                    |                 |                                 |                         |                      |             | B        |           |
| 23.5           | 559.4   | 150         | 150             | 2970   | 1263.6   | 0.8532     |      |      |                    |                 |                                 |                         |                      |             |          |           |
|                |         |             |                 |        |          |            |      |      |                    |                 |                                 |                         |                      |             |          |           |
|                |         |             |                 |        |          |            |      |      |                    |                 |                                 |                         |                      |             |          |           |
|                |         | Bottor      | n of Boring (   | @ 23.5 |          |            |      |      |                    |                 |                                 |                         |                      |             |          |           |
|                |         |             |                 |        |          |            |      |      |                    |                 |                                 |                         |                      | Ļ           |          |           |
|                |         |             |                 |        |          |            |      |      |                    | S1 A            | verage of =                     | 29.4                    | 29.3                 |             |          |           |
| Notes:         |         |             |                 |        |          |            |      |      |                    | S2 A            | verage <b>¢'</b> =              | 38.6                    | 38.1                 | ]           |          |           |

number requires manual input
 groundwater table (if not measured, use bottom of boring depth instead)

| Boring ID:     | GZ-3    |             |                 |        |          |            |      |      |                    |                 |                                 |                         |                      |             |          |           |
|----------------|---------|-------------|-----------------|--------|----------|------------|------|------|--------------------|-----------------|---------------------------------|-------------------------|----------------------|-------------|----------|-----------|
| CE             | 1.20    | (Automatic  | )               |        |          |            |      |      |                    |                 |                                 |                         |                      |             |          |           |
| CB             | 1.0     | (borehole c | liameter 60-115 | imm)   |          |            |      |      |                    |                 |                                 |                         |                      |             |          |           |
| CS             | 1.0     | (sampler w  | ithout liner)   |        |          |            |      |      |                    |                 |                                 | Carter & Bentley        |                      |             |          |           |
| gw level (ft): | 7.1     | (below grou | und surface)    |        |          |            |      |      |                    |                 |                                 | (1991)                  | PH&T 1974            |             |          |           |
| Depth (feet)   | Elev in | Unit        | Stress          | Total  | Pore     | Effective  | Cn   | Cr   | N <sub>field</sub> | N <sub>60</sub> | (N <sub>1</sub> ) <sub>60</sub> | Φ' based on             | Φ' based on          | Estimated   | Strata   | Depth for |
|                | ft      | Weight      | Increment       | Stress | Water    | Stress ov' |      |      | (blows/ft)         | (blows/ft)      | (blows/ft)                      | N <sub>field</sub> < 70 | Min. Value of        | Fines       |          | CR        |
|                | (NAVD   | (pcf)       | (psf)           | (psf)  | Pressure | (tsf)      |      |      |                    |                 |                                 |                         | N <sub>60</sub> < 73 | Content (%) |          | (meters)  |
|                | 88)     |             |                 |        | (psf)    |            |      |      |                    |                 |                                 |                         |                      |             |          |           |
| 0.0            | 588.1   | 120         | 0               | 0      | 0        | 0.0000     | -    | 0.75 |                    |                 |                                 |                         |                      |             | ASPHALT  | 0.00      |
| 1.0            | 587.1   | 120         | 120             | 120    | 0        | 0.0600     | 1.70 | 0.75 | 4                  | 4               | 6                               | 28.0                    | 28.0                 |             |          | 0.30      |
| 2.0            | 586.1   | 120         | 120             | 240    | 0        | 0.1200     | 1.70 | 0.75 |                    |                 |                                 |                         |                      |             |          | 0.61      |
| 3.0            | 585.1   | 120         | 120             | 360    | 0        | 0.1800     | 1.70 | 0.75 | 5                  | 5               | 8                               | 28.5                    | 28.5                 |             | ⊒        | 0.91      |
| 4.0            | 584.1   | 120         | 120             | 480    | 0        | 0.2400     | 1.70 | 0.75 |                    |                 |                                 |                         |                      |             | Ш.<br>Е  | 1.22      |
| 5.0            | 583.1   | 120         | 120             | 600    | 0        | 0.3000     | 1.70 | 0.75 | 6                  | 5               | 9                               | 28.8                    | 28.5                 |             | E S      | 1.52      |
| 6.0            | 582.1   | 120         | 120             | 720    | 0        | 0.3600     | 1.67 | 0.75 |                    |                 |                                 |                         |                      |             | N N      | 1.83      |
| 7.0            | 581.1   | 120         | 120             | 840    | 0        | 0.4200     | 1.54 | 0.75 | 8                  | 7               | 11                              | 29.5                    | 29.3                 |             | BAN      | 2.13      |
| 8.0            | 580.1   | 120         | 120             | 960    | 56.16    | 0.4519     | 1.49 | 0.75 |                    |                 |                                 |                         |                      |             | N N      | 2.44      |
| 9.0            | 579.1   | 120         | 120             | 1080   | 118.56   | 0.4807     | 1.44 | 0.75 | 4                  | 4               | 5                               | 28.0                    | 28.0                 |             | _        | 2.74      |
| 10.0           | 578.1   | 120         | 120             | 1200   | 180.96   | 0.5095     | 1.40 | 0.80 |                    |                 |                                 |                         |                      |             |          | 3.05      |
| 11.0           | 577.1   | 120         | 120             | 1320   | 243.36   | 0.5383     | 1.36 | 0.80 | 50                 | 48              | 65                              | 40.8                    | 40.8                 |             |          | 3.35      |
| 12.0           | 576.1   | 120         | 120             | 1440   | 305.76   | 0.5671     | 1.33 | 0.80 |                    |                 |                                 |                         |                      |             |          | 3.66      |
| 13.0           | 575.1   | 120         | 120             | 1560   | 368.16   | 0.5959     | 1.30 | 0.80 | 59                 | 57              | 73                              | 42.3                    | 42.3                 |             |          | 3.96      |
| 14.0           | 574.1   | 120         | 120             | 1680   | 430.56   | 0.6247     | 1.27 | 0.85 |                    |                 |                                 |                         |                      |             |          | 4.27      |
| 15.0           | 573.1   | 120         | 120             | 1800   | 492.96   | 0.6535     | 1.24 | 0.85 | 54                 | 55              | 68                              | 41.5                    | 42.0                 |             |          | 4.57      |
| 16.0           | 572.1   | 120         | 120             | 1920   | 555.36   | 0.6823     | 1.21 | 0.85 |                    |                 |                                 |                         |                      |             |          | 4.88      |
| 17.0           | 571.1   | 120         | 120             | 2040   | 617.76   | 0.7111     | 1.19 | 0.85 | 46                 | 47              | 56                              | 40.0                    | 40.5                 |             |          | 5.18      |
| 18.0           | 570.1   | 120         | 120             | 2160   | 680.16   | 0.7399     | 1.16 | 0.85 |                    |                 |                                 |                         |                      |             | 글        | 5.49      |
| 19.0           | 569.1   | 120         | 120             | 2280   | 742.56   | 0.7687     | 1.14 | 0.85 | 32                 | 33              | 37                              | 36.8                    | 36.8                 |             | 5        | 5.79      |
| 20.0           | 568.1   | 120         | 120             | 2400   | 804.96   | 0.7975     | 1.12 | 0.95 |                    |                 |                                 |                         |                      |             | C N      | 6.10      |
| 21.0           | 567.1   | 120         | 120             | 2520   | 867.36   | 0.8263     | 1.10 | 0.95 | 97                 | 111             | 122                             | N/A                     | N/A                  |             | BLA      | 6.40      |
| 22.0           | 566.1   | 120         | 120             | 2640   | 929.76   | 0.8551     | 1.08 | 0.95 |                    |                 |                                 |                         |                      |             | <b>U</b> | 6.71      |
| 23.0           | 565.1   | 120         | 120             | 2760   | 992.16   | 0.8839     | 1.06 | 0.95 |                    |                 |                                 |                         |                      |             |          | 7.01      |
| 24.0           | 564.1   | 120         | 120             | 2880   | 1054.56  | 0.9127     | 1.05 | 0.95 |                    |                 |                                 |                         |                      |             |          | 7.32      |
| 25.0           | 563.1   | 120         | 120             | 3000   | 1116.96  | 0.9415     | 1.03 | 0.95 | 52                 | 59              | 61                              | 41.3                    | 42.8                 |             |          | 7.62      |
| 26.0           | 562.1   | 120         | 120             | 3120   | 1179.36  | 0.9703     | 1.02 | 0.95 |                    |                 |                                 |                         |                      |             |          | 7.92      |
| 27.0           | 561.1   | 120         | 120             | 3240   | 1241.76  | 0.9991     | 1.00 | 0.95 | 52                 | 59              | 59                              | 41.3                    | 42.8                 |             |          | 8.23      |
| 28.5           | 559.6   | 120         | 180             | 3420   | 1335.36  | 1.0423     | 0.98 | 0.95 |                    |                 |                                 |                         |                      |             |          | 8.69      |
|                |         |             | Rock core       |        |          |            |      |      |                    |                 |                                 |                         |                      |             |          |           |
| 29.5           | 558.6   | 150         | 150             | 3570   | 1397.76  | 1.0861     |      |      |                    |                 |                                 |                         |                      |             |          |           |
| 30.5           | 557.6   | 150         | 150             | 3720   | 1460.16  | 1.1299     |      |      |                    |                 |                                 |                         |                      |             | ð        |           |
| 31.5           | 556.6   | 150         | 150             | 3870   | 1522.56  | 1.1737     |      |      |                    |                 |                                 |                         |                      |             | S<br>S   |           |
| 32.5           | 555.6   | 150         | 150             | 4020   | 1584.96  | 1.2175     |      |      |                    |                 |                                 |                         |                      |             | E E      |           |
| 33.5           | 554.6   | 150         | 150             | 4170   | 1647.36  | 1.2613     |      |      |                    |                 |                                 |                         |                      |             | Ξ.       |           |
|                |         |             |                 |        |          |            |      |      |                    |                 |                                 |                         |                      |             |          |           |
|                |         |             |                 |        |          |            |      |      |                    |                 |                                 |                         | i i                  |             |          |           |
|                |         | Bottor      | n of Boring     | @ 33.5 | 1        |            |      |      |                    |                 |                                 |                         |                      |             |          |           |
|                |         |             | J               |        | 1        |            |      |      | 1                  |                 |                                 |                         |                      |             | R        |           |
| <u></u>        |         |             |                 |        |          |            |      |      |                    | S1 A            | verage of =                     | 28.6                    | 28.0                 |             |          |           |
| Notes:         |         |             |                 |        |          |            |      |      |                    | S2 A            | verage of =                     | 40.5                    | 38.5                 | 1           |          |           |
|                |         |             |                 |        |          |            |      |      |                    |                 |                                 |                         |                      | 1           |          |           |

 100
 number requires manual input

 25
 groundwater table (if not measured, use bottom of boring depth instead)

| Boring ID:<br>CE | GZ-4    | (auto hamn  | ner)            |        |          |            |      |      |                    |                 |                                 |                         |                      |             |          |                |
|------------------|---------|-------------|-----------------|--------|----------|------------|------|------|--------------------|-----------------|---------------------------------|-------------------------|----------------------|-------------|----------|----------------|
| CB               | 1.0     | (borehole d | liameter 60-115 | imm)   |          |            |      |      |                    |                 |                                 |                         |                      |             |          |                |
| CS               | 1.0     | (sampler wi | thout liner)    | ,      |          |            |      |      |                    |                 |                                 | Carter & Bentley        | ,                    |             |          |                |
| gw level (ft):   | 1.9     | (below grou | und surface)    |        |          |            |      |      |                    |                 |                                 | (1991)                  | PH&T 1974            |             |          |                |
| Depth (feet)     | Elev in | Unit        | Stress          | Total  | Pore     | Effective  | Cn   | Cr   | N <sub>field</sub> | N <sub>60</sub> | (N <sub>1</sub> ) <sub>60</sub> | Φ' based on             | Φ' based on          | Estimated   | Strata   | Depth for      |
| /                | ft      | Weight      | Increment       | Stress | Water    | Stress ov' |      |      | (blows/ft)         | (blows/ft)      | (blows/ft)                      | N <sub>field</sub> < 70 | Min. Value of        | Fines       |          | C <sub>R</sub> |
|                  | (NAVD   | (pcf)       | (psf)           | (psf)  | Pressure | (tsf)      |      |      | ( , , , ,          | (               | (,                              |                         | N <sub>60</sub> < 73 | Content (%) |          | (meters)       |
|                  | 88)     |             |                 |        | (psf)    |            |      |      |                    |                 |                                 |                         |                      |             |          | (              |
| 0.0              | 579.9   | 120         | 0               | 0      | 0        | 0.0000     | -    | 0.75 |                    |                 |                                 |                         |                      |             | TOP SOIL | 0.00           |
| 1.0              | 578.9   | 120         | 120             | 120    | 0        | 0.0600     | 1.70 | 0.75 | 5                  | 5               | 8                               | 28.5                    | 28.5                 |             |          | 0.30           |
| 2.0              | 577.9   | 120         | 120             | 240    | 6.24     | 0.1169     | 1.70 | 0.75 |                    | -               |                                 |                         |                      |             | -        | 0.61           |
| 3.0              | 576.9   | 120         | 120             | 360    | 68.64    | 0.1457     | 1.70 | 0.75 | 18                 | 16              | 28                              | 32.5                    | 32.0                 |             | Ē        | 0.91           |
| 4.0              | 575.9   | 120         | 120             | 480    | 131.04   | 0.1745     | 1.70 | 0.75 |                    |                 |                                 |                         |                      |             |          | 1.22           |
| 5.0              | 574.9   | 120         | 120             | 600    | 193.44   | 0.2033     | 1.70 | 0.75 | 25                 | 23              | 38                              | 34.5                    | 34.0                 |             |          | 1.52           |
| 6.0              | 573.9   | 120         | 120             | 720    | 255.84   | 0.2321     | 1.70 | 0.75 |                    |                 |                                 |                         |                      |             |          | 1.83           |
| 7.0              | 572.9   | 120         | 120             | 840    | 318.24   | 0.2609     | 1.70 | 0.75 | 30                 | 27              | 46                              | 36.0                    | 35.3                 |             |          | 2.13           |
| 8.0              | 571.9   | 120         | 120             | 960    | 380.64   | 0.2897     | 1.70 | 0.75 |                    |                 |                                 |                         |                      |             |          | 2.44           |
| 9.0              | 570.9   | 120         | 120             | 1080   | 443.04   | 0.3185     | 1.70 | 0.75 | 31                 | 28              | 47                              | 36.5                    | 35.5                 |             |          | 2.74           |
| 10.0             | 569.9   | 120         | 120             | 1200   | 505.44   | 0.3473     | 1.70 | 0.80 |                    |                 |                                 |                         |                      |             |          | 3.05           |
| 11.0             | 568.9   | 120         | 120             | 1320   | 567.84   | 0.3761     | 1.63 | 0.80 | 22                 | 21              | 34                              | 33.8                    | 33.5                 |             |          | 3.35           |
| 12.0             | 567.9   | 120         | 120             | 1440   | 630.24   | 0.4049     | 1.57 | 0.80 |                    |                 |                                 |                         |                      |             |          | 3.66           |
| 13.0             | 566.9   | 120         | 120             | 1560   | 692.64   | 0.4337     | 1.52 | 0.80 | 28                 | 27              | 41                              | 35.5                    | 35.3                 |             | 글        | 3.96           |
| 14.0             | 565.9   | 120         | 120             | 1680   | 755.04   | 0.4625     | 1.47 | 0.85 |                    |                 |                                 |                         |                      |             | - F      | 4.27           |
| 15.0             | 564.9   | 120         | 120             | 1800   | 817.44   | 0.4913     | 1.43 | 0.85 | 28                 | 29              | 41                              | 35.5                    | 35.8                 |             | ACL      | 4.57           |
| 16.0             | 563.9   | 120         | 120             | 1920   | 879.84   | 0.5201     | 1.39 | 0.85 |                    |                 |                                 |                         |                      |             | 5        | 4.88           |
| 17.0             | 562.9   | 120         | 120             | 2040   | 942.24   | 0.5489     | 1.35 | 0.85 | 45                 | 46              | 62                              | 39.8                    | 40.3                 |             |          | 5.18           |
| 18.0             | 561.9   | 120         | 120             | 2160   | 1004.64  | 0.5777     | 1.32 | 0.85 |                    |                 |                                 |                         |                      |             |          | 5.49           |
| 19.0             | 560.9   | 120         | 120             | 2280   | 1067.04  | 0.6065     | 1.28 | 0.85 | 84                 | 86              | 110                             | N/A                     | N/A                  |             |          | 5.79           |
| 20.0             | 559.9   | 120         | 120             | 2400   | 1129.44  | 0.6353     | 1.25 | 0.95 |                    |                 |                                 |                         |                      |             |          | 6.10           |
| 21.0             | 558.9   | 120         | 120             | 2520   | 1191.84  | 0.6641     | 1.23 | 0.95 | 100                | 114             | 140                             | N/A                     | N/A                  |             |          | 6.40           |
| 22.0             | 557.9   | 120         | 120             | 2640   | 1254.24  | 0.6929     | 1.20 | 0.95 | 100                | 114             | 137                             | N/A                     | N/A                  |             |          | 6.71           |
| 23.0             | 556.9   | 120         | 120             | 2760   | 1316.64  | 0.7217     | 1.18 | 0.95 |                    |                 |                                 |                         |                      |             |          | 7.01           |
| 24.0             | 555.9   | 120         | 120             | 2880   | 1379.04  | 0.7505     | 1.15 | 0.95 |                    |                 |                                 |                         |                      |             |          | 7.32           |
|                  |         | 150         | Rock core       | 0076   |          | 0.0446     |      |      |                    |                 |                                 |                         |                      |             |          |                |
| 25.0             | 554.9   | 150         | 1350            | 3270   | 1441.44  | 0.9143     |      |      |                    |                 |                                 |                         | +                    |             | ×        |                |
| 26.0             | 553.9   | 150         | 150             | 3420   | 1503.84  | 0.9581     |      |      |                    |                 |                                 |                         |                      |             | 8        |                |
| 27.0             | 552.9   | 150         | 150             | 3570   | 1566.24  | 1.0019     |      |      |                    |                 |                                 |                         |                      |             | Ř        |                |
| 28.0             | 551.9   | 150         | 150             | 3720   | 1628.64  | 1.0457     |      |      |                    |                 |                                 |                         |                      |             | H        |                |
| 29.0             | 550.9   | 150         | 150             | 3870   | 1691.04  | 1.0895     |      |      |                    |                 |                                 |                         |                      |             |          | -              |
| ┣────            |         |             |                 |        |          |            |      |      |                    |                 |                                 |                         |                      | ┟────┨      |          |                |
|                  |         |             |                 |        |          |            |      |      |                    |                 |                                 |                         |                      |             |          |                |
|                  |         | Botto       | m of Boring     | @ 16   |          |            |      |      |                    |                 |                                 |                         |                      |             |          |                |
|                  |         | BULLO       | m or boining    | S 10   |          |            |      | 1    | 1                  | S1 A            | verage #' -                     | 20.5                    | 20.2                 | ļI          | L        |                |
| Notoo:           |         |             |                 |        |          |            |      |      |                    | S1 A            | verage w =                      | 30.3                    | 30.3                 | 4           |          |                |
| NULES.           | 100     | number      |                 |        |          |            |      |      |                    | 52 A            | itciage ψ =                     | 33.3                    | 33.0                 | 1           |          |                |

number requires manual inputgroundwater table (if not measured, use bottom of boring depth instead)

#### TABLE 1 - SUMMARY OF CALCULATED FRICTION ANGLES

Average  $\phi$  Values at

|             |        |                            | Each I   | Boring |
|-------------|--------|----------------------------|----------|--------|
|             |        |                            | Carter & |        |
| Test Boring | Strata | Strata Name or Description | Bentley  | PH&T   |
| 67.1        | S1     | Embankment Fill            | 29.8     | 29.7   |
| 92-1        | S2     | Glacial Till               | 37.6     | 33.9   |
| 67.2        | S1     | Fill                       | 29.4     | 29.3   |
| 92-2        | S2     | Glacial Till               | 38.6     | 38.1   |
| 67-3        | S1     | Embankment Fill            | 28.6     | 28.0   |
| 92-3        | S2     | Glacial Till               | 40.5     | 38.5   |
| 67.4        | S1     | Fill                       | 30.5     | 30.3   |
| 62-4        | S2     | Glacial Till               | 35.9     | 35.6   |

TABLE 2 - SUMMARY OF CALCULATED FRICTION ANGLES

| Strata          | Median Value <sup>(1)</sup> | Lower Bound <sup>(2)</sup> |  |  |
|-----------------|-----------------------------|----------------------------|--|--|
| Embankment Fill | 29 °                        | 28 °                       |  |  |
| Fill            | 30 °                        | 28 °                       |  |  |
| Glacial Till    | 38 °                        | 35 °                       |  |  |

1) Median value using all applicable correlation methods

2) Lower Bound value is estimated as the median value x (1 - Coefficient of Variation)

TABLE 3 - SELECTED FRICTION ANGLES BY STRATUM

| Strata          | Selected |
|-----------------|----------|
| Embankment Fill | 29 °     |
| Fill            | 30 °     |
| Glacial Till    | 38 °     |



**APPENDIX H – EMBANKMENT SEEPAGE AND STABILITY CALCULATIONS** 

# Seepage - Normal Pool Condition



| d                                                                                                                                                          | Parame                                        | ters              |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-------------------|--|--|--|--|
| ter Rate                                                                                                                                                   | 0 ft <sup>3</sup> /d                          |                   |  |  |  |  |
| ter Total Hea                                                                                                                                              | ad 584.88 i                                   | ft                |  |  |  |  |
|                                                                                                                                                            |                                               |                   |  |  |  |  |
|                                                                                                                                                            |                                               | · · · · · · · · · |  |  |  |  |
|                                                                                                                                                            |                                               |                   |  |  |  |  |
|                                                                                                                                                            |                                               |                   |  |  |  |  |
| 80 90                                                                                                                                                      | 100                                           | 110 120           |  |  |  |  |
| Mirror Lake Dam Analyses - Existing                                                                                                                        |                                               |                   |  |  |  |  |
| Seepage Analyses<br>Normal Pool Level                                                                                                                      |                                               |                   |  |  |  |  |
| PREPARED BY:<br>GZA GeoEnvironmental, Inc.<br>Engineers and Scientists<br>www.gza.com<br>PREPARED FOR:<br>University of Connecticut<br>Storrs, Connecticut |                                               |                   |  |  |  |  |
| PROJ MGR: JD                                                                                                                                               | REVIEWED BY: JD                               | FIGURE            |  |  |  |  |
| DESIGNED BY: EK<br>DATE:<br>03/02/2021                                                                                                                     | DRAVVN BY: EK<br>PROJECT NO.:<br>05.0046161.0 | 7 1               |  |  |  |  |

# Slope Stability (D/S) - Normal Pool Condition



# Slope Stability (U/S) - Normal Pool Condition





# ASCE 7 Hazards Report

Standard:ASCE/SEI 7-16Risk Category:IVSoil Class:D - Stiff Soil

 Elevation:
 583.7 ft (NAVD 88)

 Latitude:
 41.806997

 Longitude:
 -72.247247




| Site Soil Class:<br>Results: | D - Stiff Soil |                         |       |
|------------------------------|----------------|-------------------------|-------|
| Ss :                         | 0.185          | S <sub>D1</sub> :       | 0.088 |
| S <sub>1</sub> :             | 0.055          | T <sub>L</sub> :        | 6     |
| F <sub>a</sub> :             | 1.6            | PGA :                   | 0.1   |
| F <sub>v</sub> :             | 2.4            | PGA M:                  | 0.159 |
| S <sub>MS</sub> :            | 0.296          | F <sub>PGA</sub> :      | 1.6   |
| S <sub>M1</sub> :            | 0.131          | l <sub>e</sub> :        | 1.5   |
| S <sub>DS</sub> :            | 0.198          | <b>C</b> <sub>v</sub> : | 0.7   |
| Seismic Design Category      | С              |                         |       |

Seismic Design Category







**Data Accessed: Date Source:** 

Thu Apr 01 2021

USGS Seismic Design Maps based on ASCE/SEI 7-16 and ASCE/SEI 7-16 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-16 Ch. 21 are available from USGS.



The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

#### Seismic Site Class Calculation Summary



| Project: Mirror L | ake Dam     | Project No.: | 05.0046461.07 |  |
|-------------------|-------------|--------------|---------------|--|
| Location: Storrs, | Connecticut |              |               |  |
| alculated By:     | EK          | Date:        | 3/1/2021      |  |
| Checked By:       | JD          | Date:        | 3/15/2021     |  |

**OBJECTIVES:** 1) Determine seismic site class in accordance with ASCE-7 2016 Standard

2) Using USGS "DesignMaps" application, determine seismic parameters for use in analysis including:

- Design peak ground acceleration ( $\mathsf{PGA}_{\mathsf{M}}$ ) for use in pseudostatic slope stability analysis
- Accelerations and other seismic data for liquefaction analyses (if required)
- Using the USGS interactive deaggregations, determine the appropriate earthquake magnitude for use in liquefaction analysis (if required).

INPUT: - Boring logs for test borings GZ-1, GZ-2, GZ-3, GZ-4 by GZA (2021).

#### PROCEDURES:

### Table 20.3-1 Site Classification

| Site Class                                                                   | ν̄ <sub>s</sub>                                      | Ñ or Ñ <sub>ch</sub>                                   | $\bar{s}_u$                       |
|------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------|-----------------------------------|
| A. Hard rock                                                                 | >5,000 ft/s                                          | NA                                                     | NA                                |
| B. Rock                                                                      | 2,500 to 5,000 ft/s                                  | NA                                                     | NA                                |
| C. Very dense soil and soft rock                                             | 1,200 to 2,500 ft/s                                  | >50 blows/ft                                           | $>2,000 \text{ lb/ft}^2$          |
| D. Stiff soil                                                                | 600 to 1,200 ft/s                                    | 15 to 50 blows/ft                                      | 1,000 to 2,000 lb/ft <sup>2</sup> |
| E. Soft clay soil                                                            | <600 ft/s                                            | <15 blows/ft                                           | <1,000 lb/ft <sup>2</sup>         |
|                                                                              | Any profile with more than                           | 10 ft of soil that has the following cha               | aracteristics:                    |
|                                                                              | $\begin{array}{llllllllllllllllllllllllllllllllllll$ | 20,<br>40%,<br>gth $\bar{s}_u < 500 \text{ lb / ft}^2$ |                                   |
| F. Soils requiring site response analysis<br>in accordance with Section 21.1 | See Section 20.3.1                                   |                                                        |                                   |

*Note*: For SI: 1 ft = 0.3048 m; 1 ft /s = 0.3048 m/s; 1 lb /ft<sup>2</sup> = 0.0479 kN/m<sup>2</sup>.

Step 1 Develop the conceptual subsurface profile.

Step 2 Determine whether conditions are present that indicate Site Class F:

- 1. Soils vulnerable to potential failure (liquefiable soils, sensitive clays, weakly cemented soils)
- 2. Peats or highly organic clays greater than 10 feet in thickness
- 3. Thick layers (greater than 25 feet) of highly plastic clay (PI > 75)
- 4. Very thick soft/medium stiff clays (greater than 125 feet)

**Step 3** Check for existence of greater than 10 feet of soft clay (where  $s_u < 500 \text{ psf}$ , w > 40%, and PI > 20). If these conditions are met, classify as Site Class E.

Step 4 Categorize the site using the following three methods:

-  $v_s$  method - N method -  $s_u$  method If shear wave velocity data are available, they should be used to classify the site. The N and  $s_u$  methods should only be used if shear wave velocity data is not available, as the correlation between site amplification and these geotechnical parameters is more uncertain (and therefore more conservative) that the correlation with  $v_s$ .

ASSUMPTIONS: The bottom SPT N-values for borings at depths less than 100 feet were assumed to carry through to full analysis depth.

**RESULTS:** Based on SPT data, site should be considered Site Class D (See attached calc sheets)

Mirror Lake Dam - 05. 0046161.07 Calculated By: ΕK Date: 3/1/2021 Storrs, Connecticut Checked By: JD Date: 3/15/2021 INPUT Exploration ID: GZ-1 Ground Surface Elevation: 588 Depth of Boring: 26 ft Depth to Bedrock: 26 ft EQUATIONS where: m = number of layers  $\sum_{m}^{m}$  $d_i$  = the thickness of any soil or rock layer between 0 and 100 feet. dN<sub>i</sub> = the Standard Penetration Resistance (ASTM D 1586) not to exceed 100 blows/ft as directly measured  $N = \underline{i=1}$  $\sum_{i=1}^{m} \frac{d_i}{N}$ in the field without corrections. Note: d<sub>i</sub> calculated assuming breaks between sub-layers occur at the midpoint between SPT sample intervals (unless noted otherwise). Ν i=1 CALCULATION

> Are peats or highly organic clays greater than 10 feet in thickness present? No Are thick layers (greater than 25 feet) of highly plastic clay (PI > 75) present? No

Are very thick soft/medium stiff clays (greater than 125 feet) present? No

Is greater than 10 feet of soft clay (where  $s_u < 500 \text{ psf}$ ,  $w \ge 40\%$ , and PI > 20) present? No

|                    |           |            |                |             |      | N <sup></sup> =                               | 49.2 | (Site Class D) |
|--------------------|-----------|------------|----------------|-------------|------|-----------------------------------------------|------|----------------|
| Soil Strata        | SPT Inter | val Depth  | SPT Elevation  | SPT N-value | di   | <i>d</i> <sub><i>i</i></sub> / N <sub>i</sub> |      | Comments       |
|                    | Top, ft   | Bottom, ft | (mid-interval) |             |      |                                               |      |                |
| Sand, Silt, Gravel | 0.0       | 2.0        | 587.0          | 5           | 2.0  | 0.4                                           |      |                |
|                    | 2.0       | 4.0        | 585.0          | 8           | 2.0  | 0.3                                           |      |                |
|                    | 4.0       | 6.0        | 583.0          | 15          | 2.0  | 0.1                                           |      |                |
|                    | 6.0       | 7.1        | 581.5          | 100         | 2.6  | 0.0                                           |      |                |
|                    | 10.0      | 12.0       | 577.0          | 29          | 3.5  | 0.1                                           |      |                |
|                    | 12.0      | 14.0       | 575.0          | 40          | 2.0  | 0.1                                           |      |                |
|                    | 14.0      | 16.0       | 573.0          | 40          | 2.0  | 0.1                                           |      |                |
|                    | 16.0      | 18.0       | 571.0          | 24          | 2.0  | 0.1                                           |      |                |
|                    | 18.0      | 20.0       | 569.0          | 61          | 2.0  | 0.0                                           |      |                |
|                    | 20.0      | 22.0       | 567.0          | 26          | 2.0  | 0.1                                           |      |                |
|                    | 22.0      | 24.0       | 565.0          | 38          | 2.0  | 0.1                                           |      |                |
|                    | 24.0      | 25.5       | 563.3          | 100         | 76.0 | 0.8                                           |      |                |
|                    |           |            |                |             |      |                                               |      |                |
|                    |           |            |                |             |      |                                               |      |                |
|                    |           |            |                |             |      |                                               |      |                |
|                    |           |            |                |             |      |                                               |      |                |
|                    |           |            |                |             |      |                                               |      |                |
|                    |           |            |                |             |      |                                               |      |                |
|                    |           |            |                |             |      |                                               |      |                |
|                    |           |            |                |             |      |                                               |      |                |
|                    |           |            |                |             |      |                                               |      |                |
|                    |           |            |                |             |      |                                               |      |                |
|                    |           |            |                |             |      |                                               |      |                |
|                    |           |            |                |             |      |                                               |      |                |

DATA VALIDATION

 $\Sigma d_i =$ 100.0

Mirror Lake Dam - 05. 0046161.07 Calculated By: ΕK Date: 3/1/2021 Storrs, Connecticut Checked By: JD Date: 3/15/2021 INPUT Depth of Boring: 25 ft Exploration ID: GZ-2 Ground Surface Elevation: 582.9 Depth to Bedrock: 20 ft EQUATIONS where: m = number of layers  $\sum_{m}^{m}$  $d_i$  = the thickness of any soil or rock layer between 0 and 100 feet.  $d_{i}$ N<sub>i</sub> = the Standard Penetration Resistance (ASTM D 1586) not to exceed 100 blows/ft as directly measured  $N = \underline{i=1}$  $\frac{m}{\sum \frac{d_i}{N}}$ in the field without corrections. Note: d<sub>i</sub> calculated assuming breaks between sub-layers occur at the midpoint between SPT sample intervals (unless noted otherwise). Ν i=1 CALCULATION

- Are peats or highly organic clays greater than 10 feet in thickness present? No Are thick layers (greater than 25 feet) of highly plastic clay (PI > 75) present? No
- Are very thick soft/medium stiff clays (greater than 125 feet) present? No
- Is greater than 10 feet of soft clay (where  $s_u < 500 \text{ psf}$ ,  $w \ge 40\%$ , and PI > 20) present? No

|                    |           |            |                |             |      | N <sup></sup> =                 | 40.6 | (Site Class D) |
|--------------------|-----------|------------|----------------|-------------|------|---------------------------------|------|----------------|
| Soil Strata        | SPT Inter | val Depth  | SPT Elevation  | SPT N-value | di   | d <sub>i</sub> / N <sub>i</sub> |      | Comments       |
|                    | Top, ft   | Bottom, ft | (mid-interval) |             |      |                                 |      |                |
| Sand, Silt, Gravel | 0.0       | 2.0        | 581.9          | 16.0        | 2.0  | 0.1                             |      |                |
|                    | 2.0       | 4.0        | 579.9          | 3.0         | 2.0  | 0.7                             |      |                |
|                    | 4.0       | 6.0        | 577.9          | 5.0         | 2.0  | 0.4                             |      |                |
|                    | 6.0       | 8.0        | 575.9          | 43.0        | 2.0  | 0.0                             |      |                |
|                    | 8.0       | 10.0       | 573.9          | 40.0        | 2.0  | 0.1                             |      |                |
|                    | 10.0      | 12.0       | 571.9          | 21.0        | 2.0  | 0.1                             |      |                |
|                    | 12.0      | 14.0       | 569.9          | 45.0        | 2.0  | 0.0                             |      |                |
|                    | 14.0      | 16.0       | 567.9          | 53.0        | 2.0  | 0.0                             |      |                |
|                    | 16.0      | 16.9       | 566.5          | 100.0       | 1.5  | 0.0                             |      |                |
|                    | 18.0      | 19.5       | 564.2          | 84.0        | 82.6 | 1.0                             |      |                |
|                    |           |            |                |             |      |                                 |      |                |
|                    |           |            |                |             |      |                                 |      |                |
|                    |           |            |                |             |      |                                 |      |                |
|                    |           |            |                |             |      |                                 | 1    |                |

#### DATA VALIDATION

 $\Sigma d_i = 100.0$ 

Mirror Lake Dam - 05. 0046161.07 Calculated By: ΕK Date: 3/1/2021 Storrs, Connecticut Checked By: JD Date: 3/15/2021 INPUT Exploration ID: GZ-3 Ground Surface Elevation: 588.1 Depth of Boring: 34 ft Depth to Bedrock: 29 ft EQUATIONS where: m = number of layers  $\sum_{m}^{m}$  $d_i$  = the thickness of any soil or rock layer between 0 and 100 feet. dN<sub>i</sub> = the Standard Penetration Resistance (ASTM D 1586) not to exceed 100 blows/ft as directly measured  $N = \underline{i=1}$  $\sum_{i=1}^{m} \frac{d_i}{N}$ in the field without corrections. Note: d<sub>i</sub> calculated assuming breaks between sub-layers occur at the midpoint between SPT sample intervals (unless noted otherwise). Ν i=1 CALCULATION

> Are peats or highly organic clays greater than 10 feet in thickness present? No Are thick layers (greater than 25 feet) of highly plastic clay (PI > 75) present? No

Are very thick soft/medium stiff clays (greater than 125 feet) present? No

Is greater than 10 feet of soft clay (where  $s_u < 500 \text{ psf}$ ,  $w \ge 40\%$ , and PI > 20) present? No

|                    |           |            | (Site Class D) |             |      |                                 |  |          |
|--------------------|-----------|------------|----------------|-------------|------|---------------------------------|--|----------|
| Soil Strata        | SPT Inter | val Depth  | SPT Elevation  | SPT N-value | di   | d <sub>i</sub> / N <sub>i</sub> |  | Comments |
|                    | Top, ft   | Bottom, ft | (mid-interval) |             |      |                                 |  |          |
| Sand, Silt, Gravel | 0.0       | 2.0        | 587.1          | 4           | 2.0  | 0.5                             |  |          |
|                    | 2.0       | 4.0        | 585.1          | 5           | 2.0  | 0.4                             |  |          |
|                    | 4.0       | 6.0        | 583.1          | 6           | 2.0  | 0.3                             |  |          |
|                    | 6.0       | 8.0        | 581.1          | 8           | 2.0  | 0.3                             |  |          |
|                    | 8.0       | 10.0       | 579.1          | 4           | 2.0  | 0.5                             |  |          |
|                    | 10.0      | 12.0       | 577.1          | 50          | 2.0  | 0.0                             |  |          |
|                    | 12.0      | 14.0       | 575.1          | 59          | 2.0  | 0.0                             |  |          |
|                    | 14.0      | 16.0       | 573.1          | 54          | 2.0  | 0.0                             |  |          |
|                    | 16.0      | 18.0       | 571.1          | 46          | 2.0  | 0.0                             |  |          |
|                    | 18.0      | 20.0       | 569.1          | 32          | 2.0  | 0.1                             |  |          |
|                    | 20.0      | 22.0       | 567.1          | 100         | 3.0  | 0.0                             |  |          |
|                    | 24.0      | 25.7       | 563.3          | 52          | 3.2  | 0.1                             |  |          |
|                    | 26.7      | 27.7       | 560.9          | 52          | 73.8 | 1.4                             |  |          |
|                    |           |            |                |             |      |                                 |  |          |
|                    |           |            |                |             |      |                                 |  |          |
|                    |           |            |                |             |      |                                 |  |          |
|                    |           |            |                |             |      |                                 |  |          |
|                    |           |            |                |             |      |                                 |  |          |
|                    |           |            | l              |             |      |                                 |  |          |

ſ

#### DATA VALIDATION

 $\Sigma d_i = 100.0$ 

Mirror Lake Dam - 05. 0046161.07 Calculated By: ΕK Date: 3/1/2021 Storrs, Connecticut Checked By: JD Date: 3/15/2021 INPUT Exploration ID: GZ-4 Ground Surface Elevation: 579.9 Depth of Boring: 29 ft Depth to Bedrock: 24 ft EQUATIONS where: m = number of layers  $\sum_{m}^{m}$  $d_i$  = the thickness of any soil or rock layer between 0 and 100 feet. dN<sub>i</sub> = the Standard Penetration Resistance (ASTM D 1586) not to exceed 100 blows/ft as directly measured  $N = -\frac{i=1}{2}$  $\sum_{i=1}^{m} \frac{d_i}{N}$ in the field without corrections. Note: d<sub>i</sub> calculated assuming breaks between sub-layers occur at the midpoint between SPT sample intervals (unless noted otherwise). Ν i=1 CALCULATION

> Are peats or highly organic clays greater than 10 feet in thickness present? No Are thick layers (greater than 25 feet) of highly plastic clay (PI > 75) present? No

Are very thick soft/medium stiff clays (greater than 125 feet) present? No

Is greater than 10 feet of soft clay (where  $s_u < 500 \text{ psf}$ ,  $w \ge 40\%$ , and PI > 20) present? No

|                    |           |            |                |             |      | N =                             | 54.8 | (Site Class C) |
|--------------------|-----------|------------|----------------|-------------|------|---------------------------------|------|----------------|
| Soil Strata        | SPT Inter | val Depth  | SPT Elevation  | SPT N-value | di   | d <sub>i</sub> / N <sub>i</sub> |      | Comments       |
|                    | Top, ft   | Bottom, ft | (mid-interval) |             |      |                                 |      |                |
| Sand, Silt, Gravel | 0.0       | 2.0        | 578.9          | 5           | 2.0  | 0.4                             |      |                |
|                    | 2.0       | 4.0        | 576.9          | 18          | 2.0  | 0.1                             |      |                |
|                    | 4.0       | 6.0        | 574.9          | 25          | 2.0  | 0.1                             |      |                |
|                    | 6.0       | 8.0        | 572.9          | 30          | 2.0  | 0.1                             |      |                |
|                    | 8.0       | 10.0       | 570.9          | 31          | 2.0  | 0.1                             |      |                |
|                    | 10.0      | 12.0       | 568.9          | 22          | 2.0  | 0.1                             |      |                |
|                    | 12.0      | 14.0       | 566.9          | 28          | 2.0  | 0.1                             |      |                |
|                    | 14.0      | 16.0       | 564.9          | 28          | 2.0  | 0.1                             |      |                |
|                    | 16.0      | 18.0       | 562.9          | 45          | 2.0  | 0.0                             |      |                |
|                    | 18.0      | 19.8       | 561.0          | 84          | 1.9  | 0.0                             |      |                |
|                    | 20.0      | 20.9       | 559.5          | 100         | 1.6  | 0.0                             |      |                |
|                    | 22.0      | 22.9       | 557.5          | 100         | 2.0  | 0.0                             |      |                |
|                    | 24.0      | 24.1       | 555.9          | 100         | 76.6 | 0.8                             |      |                |
|                    |           |            |                |             |      |                                 |      |                |
|                    |           |            |                |             |      |                                 |      |                |
|                    |           |            |                |             |      |                                 |      |                |
|                    |           |            |                |             |      |                                 |      |                |
|                    |           |            |                |             |      |                                 |      |                |
|                    |           |            |                |             |      |                                 |      |                |

### DATA VALIDATION

 $\Sigma d_i = 100.0$ 

# **SPT-Based Liquefaction Susceptibility Calculation**



| Project: Mirror Lake Dar | n    | Project No: 05 | .0046161.07 |
|--------------------------|------|----------------|-------------|
| ocation: Storrs, Connect | icut |                |             |
| Calculated By:           | EK   | Date:          | 3/30/2021   |
| Checked By:              | JD   | Date:          | 3/30/2021   |
|                          |      |                |             |

**PURPOSE:** Estimate exploration-specific factor of safety against liquefaction.

## **REFERENCES:**

- 1. Idriss, I.M. and Boulanger, R.W. (2014). *CPT and SPT Based Liquefaction Triggering Procedures.* Center for Geotechnical Modeling, University of California at Davis. Report No. UCD/CGM-14/01.
- Idriss, I.M. and Boulanger, R.W. (2004). Semi-Empirical Procedures for Evaluating Liquefaction Potential During Earthquakes. Proceedings of the Joint International Conference on Soil Dynamics & Earthquake Engineering and International Conference on Earthquake Geotechnical Engineering. Berkeley, California. January, 2004. pp.32-56.

## **INSTRUCTIONS:**

- 1. Create and modify calculation worksheet tabs to accommodate number of borings and depths.
- 2. Enter input parameters for each boring in shaded fields.
- 3. Input data from boring (depths, N, estimated fines content, and interpreted soil strata).
- 4. Add summary of results below.

## **INPUT PARAMETERS:**

- 1. Use boring logs GZ-1 through GZ-4 for subsurface and drilling data.
- 2. Use site-adjusted  $PGA_{M}$  based on 2014 seismic data from USGS, adjusted for Site Class D.
- Use assumed M = 6.0 (USGS deaggregation of seismic data for magnitude versus distance from site indicates that this value is slightly conservative, as mean value for ±2500 year return period is M = 5.49)

## **SUMMARY OF RESULTS:**

1. Analyses indicate that the downstream embankment fill soils encountered are not susceptible to liquefaction.

| SPT-Based Liquefaction Factor of Safety Calculation                                                                                                            |                                                                         |                                                                                                                         |                                                                                                              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| Project Name: Mirror Lake Dam<br>Project Location: Storrs, Connecticut<br>Project Number: 05.0046161.07<br>Calculations Reference: Idriss & Boulanger (2014)   |                                                                         |                                                                                                                         |                                                                                                              |
| Elevation Data (at time of drilling):<br>Ground Surface Elevation: 588.0<br>Typical rot stickup during SPT: 4 ft                                               | Assumed Soil Weight Above Water Table, y 120 pcf                        | Seismic Assumptions (API Preliminary);<br>Max Accel at Surface, a <sub>max</sub> (g)= 0.159                             | Design Ground Surface Elevation: 589.1                                                                       |
| Groundwater Elevation: 551.0 Typical rod stickup during SPT: 1.219 m<br>Groundwater Depth (ft): 7.0 Borehole Diameter: 4 in<br>Unit Weight of Water (nch: 62.4 | Assumed Soli Weight Below Water Lable, $f_{sal} = \frac{120}{2089}$ psf | Design Earthquake Magnitude, M = 6.00<br>Is void redistribution significant? No<br>Earthquake Return Period (vrs) >2500 | Design Groundwater Elevation: 581.0<br>Design Groundwater Depth (ft): 8.1<br>Thickness of New Fill (ft): 1.1 |
|                                                                                                                                                                |                                                                         |                                                                                                                         | Thickness of New Fill (m): 0.3<br>Assumed Soil Weight New Fill, γ= 125                                       |

SPT Correction Factors:

Split Spoon Type: I.D.=1-3/8 in - Standard Sampler Hammer Type: Auto Hammer

Capacity/Demand Ratio (Factor of Safety) Calculations Subsurface Data and Parameter Calculations Desig Total Total Hamme Depth (mid-SPT interval)  $CRR_{(M=7.5, MSF_{max} MSF}$ Effective Energy Ratio, ER Fines Content CRR C<sub>N</sub> (N<sub>1</sub>)<sub>60</sub>  $K_0$ ΔN (N1)60CS (N1)60-sr Cσ Elev. Depth Stress,  $C_{E}$  $C_R$ CB  $C_s$ N<sub>60</sub> Kσ Q ξR Kα N<sub>fiek</sub> Flags α а b С r<sub>d</sub> Stress, o'v Stress  $\sigma_v$  $\sigma_v$ psf 258 498 738 924 1478 1728 1978 [for Ka] [for Ka] [for Ka] [for Ka blows/ft blows [for Ka] Ifor Ka 587.0 0.30 120 120 1.00 0.75 1.00 0.50 1.13 1.08 0.08 0.25 0.48 0.12 0.21 -0.52 1.89 0.30 1.00 Unsaturate 1.00 1.70 40 12 10 0.13 1.10 10 0.21 0.21 13 22 88 33 0.48 0.48 -0.60 -0.60 585.0 583.0 0.91 1.52 1.00 0.75 1.00 0.75 1.00 1.00 1.00 1.00 10 19 16 25 0.16 0.28 1.19 1.46 1.12 1.28 0.09 0.13 1.10 1.10 0.12 0.12 2.52 2.52 0.50 1.00 0.99 0.98 3 360 600 360 600 8 Unsaturated 60 60 6 1.70 40 40 0.50 10 10 1.70 0.50 Unsaturated 11 15 5 6 0.28 1.46 4.13 2.20 1.42 2.06 4.13 2.20 4.13 2.20 0.58 1.78 4.13 2.20 0.62 1.81 6.55 11 1.00 1.00 1.00 86 31 1.10 1.10 1.10 10 10 10 0.48 0.48 -0.60 -0.60 581.5 2.00 786 786 100 60 1.00 0.80 1.00 1.07 25 25 0.50 91 1.72 0.30 0.12 2.52 19.75 0.97 Unsaturated 80 1.00 0.85 
 1.64
 0.21

 1.72
 0.30

 1.72
 0.30
 0.95 0.93 0.92 577.0 3.35 1340 1090 25 36 0.12 2.52 6.47 19.75 29 60 1.00 1.26 0.50 5 1.00 1.00 1.00 1.00 1.00 1.10 1.10 1.06 1.08 1.03 13 15 17 575.0 3.96 573.0 4.57 1590 1840 1.00 0.85 1.00 0.85 1.00 1.00 10 10 10 0.48 0.48 0.12 0.12 -0.60 -0.60 2.52 2.52 1216 1.18 1.14 40 39 25 25 25 0.50 42 41 40 60 34 5 45 1341 34 0.50 44 19.75 40 60 5 
 571.0
 5.18

 569.0
 5.79

 567.0
 6.40
 1.00 1.00 1.00 0.48 0.48 0.48 -0.60 -0.60 -0.60 2090 1466 24 0.95 1.00 23 1.15 26 0.50 31 28 1.47 0.17 0.12 2.52 2.27 0.91 2228 60 19 21 2340 2590 1591 1716 61 60 60 0.95 0.95 1.00 1.00 58 25 1.05 1.08 61 27 25 25 0.50 0.50 66 32 63 29 1.72 1.49 0.30 0.17 10 10 0.12 0.12 2.52 2.52 19.42 2.39 0.89 0.88 2478 2728 26 5 10 10 10 1.04 1.00 25 25 23 565.0 7.01 1842 1.00 0.95 1.00 1.00 43 40 97 4.13 2.20 1.72 0.30 1.04 0.25 0.48 0.12 -0.60 2.52 18.63 2840 38 60 36 38 0.50 0.86 2978 5 24.75 563.3 7.54 3059 1951 100 60 1.00 0.95 1.00 1.00 95 95 0.50 5 100 4.13 2.20 1.72 0.30 1.02 0.25 0.48 0.12 0.21 -0.60 2.52 18.32 0.85 3196

Notes: 1. Factor of safety calculations limited to 5.0. Actual FS may be greater but shown as 5.0.

2. Factor of safety presented as 5.0 for Unsaturated and Silt/Clay soils; not calculated.

3. Ground surface elevation obtained from boring logs

4. Fines content was conservatively estimated based on low end of range for soil description provided on log where laboratory test results were not available.

Indicates factors of safety < 1.1, where liquefaction is likely

Indicates factors of safety > 1.1 but < 1.4, where settlement due to cyclic strain softening is possible

 Calculated By:
 EK
 Date:
 3/30/2021

 Checked By:
 JD
 Date:
 3/30/2021

|              |                                                   |      |     |                                       |                    |       | Vertical S | ettlement |                                        |      |
|--------------|---------------------------------------------------|------|-----|---------------------------------------|--------------------|-------|------------|-----------|----------------------------------------|------|
| n<br>I<br>S, | Design<br>Effective<br>Stress,<br>σ' <sub>v</sub> | CSR  | Fs  | Post-<br>Liquef.<br>Shear<br>Strength | Layer<br>Thickness | Fα    | Υlim       | Ŷmax      | Vertical reconsol Strain, $\epsilon_v$ | ΔSi  |
|              | psf                                               |      |     | psf                                   | ft                 |       |            |           | ft                                     | in   |
|              | 258                                               | 0.10 | 5.0 |                                       | 2.0                | 0.86  | 0.38       | 0.000     | 0.000                                  | 0.00 |
|              | 498                                               | 0.10 | 5.0 |                                       | 2.0                | 0.72  | 0.25       | 0.000     | 0.000                                  | 0.00 |
|              | 738                                               | 0.10 | 5.0 |                                       | 1.8                | 0.25  | 0.09       | 0.000     | 0.000                                  | 0.00 |
|              | 924                                               | 0.10 | 5.0 |                                       | 3.0                | -5.21 | 0.00       | 0.000     | 0.000                                  | 0.00 |
|              | 1228                                              | 0.12 | 5.0 |                                       | 3.2                | -0.52 | 0.02       | 0.000     | 0.000                                  | 0.00 |
|              | 1353                                              | 0.12 | 5.0 |                                       | 2.0                | -1.19 | 0.00       | 0.000     | 0.000                                  | 0.00 |
|              | 1478                                              | 0.13 | 5.0 |                                       | 2.0                | -1.11 | 0.00       | 0.000     | 0.000                                  | 0.00 |
|              | 1604                                              | 0.13 | 5.0 |                                       | 2.0                | -0.17 | 0.04       | 0.000     | 0.000                                  | 0.00 |
|              | 1729                                              | 0.13 | 5.0 |                                       | 2.0                | -2.94 | 0.00       | 0.000     | 0.000                                  | 0.00 |
|              | 1854                                              | 0.13 | 5.0 |                                       | 2.0                | -0.21 | 0.04       | 0.000     | 0.000                                  | 0.00 |
|              | 1979                                              | 0.13 | 5.0 |                                       | 1.9                | -1.00 | 0.00       | 0.000     | 0.000                                  | 0.00 |
|              | 2089                                              | 0.13 | 5.0 |                                       | 0.9                | -6.10 | 0.00       | 0.000     | 0.000                                  | 0.00 |
|              |                                                   |      |     |                                       |                    |       |            |           |                                        |      |



# Liquefaction Depth Profiles



| SPT-Based Liquefaction Factor of Safety Calculation                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Project Name: Mirror Lake Dam<br>Project Location: Storrs, Connecticut<br>Project Number: 05.0046161.07<br>Calculations Reference: Idriss & Boulanger (2014)                                                                                                                                                                    |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                        |
| Elevation Data (at time of drilling):       Drilling Data:         Ground Surface Elevation:       582.9         Typical rod stickup during SPT:       4         Groundwater Elevation:       579.7         Groundwater Depth (ft):       3.3         Borehole Diameter:       4         Init Weight of Water (pcf):       62.4 | Material Properties:         Assumed Soil Weight Above Water Table, γ =       120       pcf         Assumed Soil Weight Below Water Table, γ =       125       pcf         Assumed Soil Weight Person Water Table, γ =       2089       psf | Seismic Assumptions (API Preliminary):         Max Accel at Surface, a <sub>max</sub> (g)=         Design Earthquake Magnitude, M =         Is void redistribution significant?         No         Earthquake Return Period (yrs) | Design Ground Surface Elevation:       582.9         Design Groundwater Elevation:       579.7         Design Groundwater Depth (It):       3.3         Thickness of New Fill (It):       0.0         Thickness of New Fill (It):       0.0         Assumed Soil Weight New Fill, $\gamma$ =       125 |
| SPI Correction Factors:                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                        |

Split Spoon Type: I.D.=1-3/8 in - Standard Sampler Hammer Type: Auto Hammer

| Subsurface Data and Parameter Calculations |       |      |                                       |                         |                    |             |                              |             |       |                  |         | Canacity/Domand Patio (Eactor of Safety) Calculations |                 |                |                                 |                 |      |         |                                   |                                   |                         |                    |      |              | Vortical     | Sottlomont |          |            |          |          |                |                |                                         |                |                                              |                                                   |      |     |                              |                    |       |          |                  |                                        |      |
|--------------------------------------------|-------|------|---------------------------------------|-------------------------|--------------------|-------------|------------------------------|-------------|-------|------------------|---------|-------------------------------------------------------|-----------------|----------------|---------------------------------|-----------------|------|---------|-----------------------------------|-----------------------------------|-------------------------|--------------------|------|--------------|--------------|------------|----------|------------|----------|----------|----------------|----------------|-----------------------------------------|----------------|----------------------------------------------|---------------------------------------------------|------|-----|------------------------------|--------------------|-------|----------|------------------|----------------------------------------|------|
|                                            |       |      |                                       |                         |                    |             | Subsuit                      |             |       | arameter         | Calcula | alions                                                |                 |                |                                 |                 |      |         |                                   |                                   |                         |                    |      |              |              |            | Ca       | pacity/Dei |          |          | i Salety) G    | arculation     | <b>,</b>                                |                |                                              |                                                   |      |     | Deat                         |                    |       | vertical | Settlement       |                                        |      |
| Depth<br>(mid-SPT<br>interval)             | Elev  | Dept | Total<br>th Stress,<br>σ <sub>v</sub> | Effective<br>Stress, σ' | N <sub>field</sub> | Flags       | Hamm<br>Energ<br>Ratio<br>ER | ler<br>Jy C | e C   | C <sub>R</sub> C | Ъ       | Cs                                                    | N <sub>60</sub> | C <sub>N</sub> | (N <sub>1</sub> ) <sub>60</sub> | Fines<br>Conter | t Ko | ΔN      | (N <sub>1</sub> ) <sub>60CS</sub> | (N <sub>1</sub> ) <sub>60-s</sub> | r (M=7.5,<br>σ = 1 atm) | MSF <sub>max</sub> | MSF  | $C_{\sigma}$ | $K_{\sigma}$ | Q          | α        | а          | b        | с        | ξ <sub>R</sub> | K <sub>α</sub> | <b>СRR</b><br>(М. <i>σ</i> , <i>α</i> ) | r <sub>d</sub> | Design<br>Total<br>Stress,<br>σ <sub>v</sub> | Design<br>Effective<br>Stress,<br>σ' <sub>v</sub> | CSR  | Fs  | Liquef.<br>Shear<br>Strength | Layer<br>Thickness | Fα    | Υlim     | γ <sub>max</sub> | Vertical reconsol Strain, $\epsilon_v$ | ∆Si  |
| ft                                         | ft    | m    | psf                                   | psf                     | blows/ft           |             | %                            |             |       |                  |         |                                                       | blows/ft        |                | blows/ft                        | %               |      | blows/f | t blows/ft                        | blows/ft                          |                         |                    |      |              |              | [for Kα]   | [for Kα] | [for Kα]   | [for Kα] | [for Kα] | [for Kα]       |                |                                         |                | psf                                          | psf                                               |      |     | psf                          | ft                 |       |          |                  | ft                                     | in   |
| 1                                          | 581.9 | 0.30 | ) 120                                 | 120                     | 16                 | Unsaturated | 60                           | 1.0         | 00 0. | .75 1.           | 00      | 1.00                                                  | 12              | 1.70           | 20                              | 40              | 0.50 | 6       | 26                                | 24                                | 0.32                    | 1.51               | 1.31 | 0.14         | 1.10         | 10         | 0.25     | 0.48       | 0.12     | 0.21     | -0.60          | 2.52           | 1.14                                    | 1.00           | 120                                          | 120                                               | 0.10 | 5.0 |                              | 2.0                | 0.17  | 0.08     | 0.000            | 0.000                                  | 0.00 |
| 3                                          | 579.9 | 0.91 | 1 360                                 | 360                     | 3                  | Unsaturated | 60                           | 1.0         | 00 0. | .75 1.           | 00      | 1.00                                                  | 2               | 1.70           | 4                               | 40              | 0.50 | 6       | 9                                 | 7                                 | 0.11                    | 1.10               | 1.06 | 0.07         | 1.10         | 10         | 0.25     | 0.48       | 0.12     | 0.21     | -0.42          | 1.33           | 0.18                                    | 1.00           | 360                                          | 360                                               | 0.10 | 5.0 |                              | 2.0                | 0.93  | 0.51     | 0.000            | 0.000                                  | 0.00 |
| 5                                          | 577.9 | 1.52 | 2 609                                 | 500                     | 5                  |             | 60                           | 1.0         | 00 0. | .75 1.           | 00      | 1.00                                                  | 4               | 1.70           | 6                               | 40              | 0.50 | 6       | 12                                | 10                                | 0.13                    | 1.13               | 1.08 | 0.08         | 1.10         | 10         | 0.25     | 0.48       | 0.12     | 0.21     | -0.50          | 1.72           | 0.27                                    | 0.99           | 609                                          | 500                                               | 0.12 | 2.2 |                              | 2.0                | 0.86  | 0.38     | 0.000            | 0.000                                  | 0.00 |
| 7                                          | 575.9 | 2.13 | 3 859                                 | 625                     | 43                 |             | 60                           | 1.0         | 00 0. | .80 1.           | 00      | 1.00                                                  | 34              | 1.36           | 47                              | 25              | 0.50 | 5       | 52                                | 49                                | 4.13                    | 2.20               | 1.72 | 0.30         | 1.10         | 10         | 0.25     | 0.48       | 0.12     | 0.21     | -0.60          | 2.52           | 19.75                                   | 0.98           | 859                                          | 625                                               | 0.14 | 5.0 |                              | 2.0                | -1.75 | 0.00     | 0.000            | 0.000                                  | 0.00 |
| 9                                          | 573.9 | 2.74 | 4 1109                                | 750                     | 40                 |             | 60                           | 1.0         | 00 0. | .80 1.           | 00      | 1.00                                                  | 32              | 1.33           | 43                              | 25              | 0.50 | 5       | 48                                | 45                                | 4.13                    | 2.20               | 1.72 | 0.30         | 1.10         | 10         | 0.25     | 0.48       | 0.12     | 0.21     | -0.60          | 2.52           | 19.75                                   | 0.96           | 1109                                         | 750                                               | 0.15 | 5.0 |                              | 2.0                | -1.41 | 0.00     | 0.000            | 0.000                                  | 0.00 |
| 11                                         | 571.9 | 3.35 | 5 1359                                | 875                     | 21                 |             | 60                           | 1.0         | 00 0. | .85 1.           | 00      | 1.00                                                  | 18              | 1.41           | 25                              | 25              | 0.50 | 5       | 30                                | 27                                | 0.51                    | 1.73               | 1.44 | 0.16         | 1.10         | 10         | 0.25     | 0.48       | 0.12     | 0.21     | -0.60          | 2.52           | 2.02                                    | 0.95           | 1359                                         | 875                                               | 0.15 | 5.0 |                              | 2.0                | -0.11 | 0.04     | 0.000            | 0.000                                  | 0.00 |
| 13                                         | 569.9 | 3.96 | 6 1609                                | 1000                    | 45                 |             | 60                           | 1.0         | 00 0. | .85 1.           | 00      | 1.00                                                  | 38              | 1.21           | 46                              | 25              | 0.50 | 5       | 51                                | 48                                | 4.13                    | 2.20               | 1.72 | 0.30         | 1.10         | 10         | 0.25     | 0.48       | 0.12     | 0.21     | -0.60          | 2.52           | 19.75                                   | 0.94           | 1609                                         | 1000                                              | 0.16 | 5.0 |                              | 2.0                | -1.71 | 0.00     | 0.000            | 0.000                                  | 0.00 |
| 15                                         | 567.9 | 4.57 | 7 1859                                | 1126                    | 53                 |             | 60                           | 1.0         | 00 0. | .85 1.           | 00      | 1.00                                                  | 45              | 1.15           | 52                              | 25              | 0.50 | 5       | 57                                | 54                                | 4.13                    | 2.20               | 1.72 | 0.30         | 1.10         | 10         | 0.25     | 0.48       | 0.12     | 0.21     | -0.60          | 2.52           | 19.75                                   | 0.93           | 1859                                         | 1126                                              | 0.16 | 5.0 |                              | 1.0                | -2.17 | 0.00     | 0.000            | 0.000                                  | 0.00 |
| 16.45                                      | 566.5 | 5.01 | 1 2040                                | 1216                    | 100                |             | 60                           | 1.0         | 00 0. | .95 1.           | 00      | 1.00                                                  | 95              | 1.02           | 97                              | 25              | 0.50 | 5       | 102                               | 99                                | 4.13                    | 2.20               | 1.72 | 0.30         | 1.10         | 10         | 0.25     | 0.48       | 0.12     | 0.21     | -0.60          | 2.52           | 19.75                                   | 0.92           | 2040                                         | 1216                                              | 0.16 | 5.0 |                              | 1.5                | -6.22 | 0.00     | 0.000            | 0.000                                  | 0.00 |
| 18.8                                       | 564.1 | 5.73 | 3 2334                                | 1363                    | 84                 |             | 60                           | 1.0         | 00 0. | .95 1.           | 00      | 1.00                                                  | 80              | 1.04           | 83                              | 25              | 0.50 | 5       | 88                                | 85                                | 4.13                    | 2.20               | 1.72 | 0.30         | 1.10         | 10         | 0.25     | 0.48       | 0.12     | 0.21     | -0.60          | 2.52           | 19.75                                   | 0.90           | 2334                                         | 1363                                              | 0.16 | 5.0 |                              | 2.4                | -4.92 | 0.00     | 0.000            | 0.000                                  | 0.00 |
|                                            |       |      |                                       |                         |                    |             |                              |             |       |                  |         |                                                       |                 |                |                                 |                 |      |         |                                   |                                   |                         |                    |      |              |              |            | _        |            |          |          |                |                |                                         |                |                                              |                                                   |      |     |                              |                    | -     |          |                  |                                        |      |

 Notes:
 1. Factor of safety calculations limited to 5.0. Actual FS may be greater but shown as 5.0.

 2. Factor of safety presented as 5.0 for Unsaturated and Silt/Clay soils; not calculated.

 3. Ground surface elevation obtained from boring logs

 4. Fines content was conservatively estimated based on low end of range for soil description provided on log where laboratory test results were not available.

Indicates factors of safety < 1.1, where liquefaction is likely Indicates factors of safety ≥ 1.1 but < 1.4, where settlement due to cyclic strain softening is possible

| Calculated By:  | EK | Date: | 3/30/2021 |
|-----------------|----|-------|-----------|
| Checked By:     | JD | Date: | 3/30/2021 |
|                 |    |       |           |
| Exploration ID: |    | GZ-2  |           |
|                 |    |       |           |



# Liquefaction Depth Profiles



| SPT-Bas                                             | sed Liquefaction Factor of Safety C                                                                                                                                             | Calculation                                                                                                                                                                                        |                                                                                                                                                                                                                                             |                                                                                                                                                                                 |                                                                                                                                                            |
|-----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Project N<br>Project L<br>Project N<br>Calculations | Name:         Mirror Lake Dam           Location:         Storrs, Connecticut           Number:         05.0046161.07           vs Reference:         Idriss & Boulanger (2014) |                                                                                                                                                                                                    |                                                                                                                                                                                                                                             |                                                                                                                                                                                 |                                                                                                                                                            |
|                                                     | Elevation Data (at time of drilling):<br>Ground Surface Elevation: 588.1<br>Groundwater Elevation: 581.0<br>Groundwater Depth (ft): 7.1                                         | Drilling Data:           Typical rod stickup during SPT:         4         ft           Typical rod stickup during SPT:         1.2192         m           Borehole Diameter:         4         in | Material Properties:           Assumed Soil Weight Above Water Table, $\gamma =$ 120         pcf           Assumed Soil Weight Below Water Table, $\gamma_{sat} =$ 125         pcf           Atmospheric Pressure, $P_a =$ 2089         psf | Seismic Assumptions (API Preliminary):         Max Accel at Surface, a <sub>max</sub> (g)=         Design Earthquake Magnitude, M =         Is void redistribution significant? | Design Ground Surface Elevation:       589.1         Design Groundwater Elevation:       581.0         Design Groundwater Depth (ft):       8.1            |
|                                                     | Unit weight of Water (pcf): <u>62.4</u>                                                                                                                                         |                                                                                                                                                                                                    |                                                                                                                                                                                                                                             | Earrnquake Return Penod (yrs) >2500                                                                                                                                             | Inickness of New Fill (m):         1.0           Thickness of New Fill (m):         0.3           Assumed Soil Weight New Fill, y =         125         pc |

SPT Correction Factors:

Split Spoon Type: I.D.=1-3/8 in - Standard Sampler Hammer Type: Auto Hammer

|                                |       |        |                                       |                        |                      |             |                            |                          |                  |                  |           |      |                 |                |                                 |                  |      |          |                                   |                        | 1                           |      |                    |              |      |          |          |            |            |           |              |            |                                  |                |                                              |                                                   |      |     | 1                                     | 1                  |                |    |              |         |                                                |      |
|--------------------------------|-------|--------|---------------------------------------|------------------------|----------------------|-------------|----------------------------|--------------------------|------------------|------------------|-----------|------|-----------------|----------------|---------------------------------|------------------|------|----------|-----------------------------------|------------------------|-----------------------------|------|--------------------|--------------|------|----------|----------|------------|------------|-----------|--------------|------------|----------------------------------|----------------|----------------------------------------------|---------------------------------------------------|------|-----|---------------------------------------|--------------------|----------------|----|--------------|---------|------------------------------------------------|------|
|                                |       |        |                                       |                        |                      |             | Subsur                     | face Da                  | ita and Pa       | rameter          | Calculati | ions |                 |                |                                 |                  |      |          |                                   |                        |                             |      |                    |              |      |          | Ca       | apacity/De | emand Rati | o (Factor | of Safety) C | alculation | s                                |                |                                              |                                                   |      |     |                                       |                    |                | Ve | ertical Sett | tlement |                                                |      |
| Depth<br>(mid-SPT<br>interval) | Elev  | . Dept | Total<br>th Stress,<br>σ <sub>v</sub> | Effective<br>Stress, o | , N <sub>field</sub> | Flags       | Hamr<br>Ener<br>Rati<br>ER | mer<br>rgy (<br>io,<br>R | C <sub>E</sub> C | c <sub>r</sub> C | в         | Cs   | N <sub>60</sub> | C <sub>N</sub> | (N <sub>1</sub> ) <sub>60</sub> | Fines<br>Content | Ko   | ΔN       | (N <sub>1</sub> ) <sub>60C5</sub> | s (N₁) <sub>60-5</sub> | CRR<br>(M=7.5,<br>σ = 1 atm | MSFn | <sub>nax</sub> MSF | $C_{\sigma}$ | Kσ   | Q        | α        | а          | b          | с         | ξR           | Kα         | СRR<br>(М. <i>σ</i> , <i>α</i> ) | r <sub>d</sub> | Design<br>Total<br>Stress,<br>σ <sub>v</sub> | Design<br>Effective<br>Stress,<br>σ' <sub>v</sub> | CSR  | Fs  | Post-<br>Liquef.<br>Shear<br>Strengtl | Layer<br>Thickness | F <sub>α</sub> | γ  | Ylim         | Ymax    | Vertical<br>reconsol<br>Strain, ε <sub>v</sub> | ∆Si  |
| ft                             | ft    | m      | psf                                   | psf                    | blows/ft             |             | %                          |                          |                  |                  |           |      | blows/ft        |                | blows/ft                        | %                |      | blows/ft | blows/ft                          | blows/f                | t                           |      |                    |              |      | [for Kα] | [for Kα] | [for Kα]   | [for Kα]   | [for Ka]  | [for Kα]     |            |                                  |                | psf                                          | psf                                               |      |     | psf                                   | ft                 |                |    |              |         | ft                                             | in   |
| 1                              | 587.1 | 0.30   | 0 120                                 | 120                    | 4                    | Unsaturated | 60                         | ) 1                      | .00 0.           | 75 1.            | · 00      | 1.00 | 3               | 1.70           | 5                               | 45               | 0.50 | 6        | 11                                | 9                      | 0.12                        | 1.12 | 1.07               | 0.08         | 1.10 | 10       | 0.25     | 0.48       | 0.12       | 0.21      | -0.48        | 1.65       | 0.24                             | 1.00           | 245                                          | 245                                               | 0.10 | 5.0 |                                       | 2.0                | 0.90           | 0  | ).44         | 0.000   | 0.000                                          | 0.01 |
| 3                              | 585.1 | 0.91   | 1 360                                 | 360                    | 5                    | Unsaturated | 60                         | ) 1                      | .00 0.           | 75 1.            | - 0C      | 1.00 | 4               | 1.70           | 6                               | 45               | 0.50 | 6        | 12                                | 10                     | 0.13                        | 1.13 | 1.08               | 0.08         | 1.10 | 10       | 0.25     | 0.48       | 0.12       | 0.21      | -0.50        | 1.75       | 0.28                             | 0.99           | 485                                          | 485                                               | 0.10 | 5.0 |                                       | 2.0                | 0.86           | 0  | ).38         | 0.000   | 0.000                                          | 0.01 |
| 5                              | 583.1 | 1.52   | 2 600                                 | 600                    | 6                    | Unsaturated | 60                         | ) 1                      | .00 0.           | 75 1.            | . 0C      | 1.00 | 5               | 1.70           | 8                               | 45               | 0.50 | 6        | 13                                | 11                     | 0.14                        | 1.15 | 1.09               | 0.08         | 1.10 | 10       | 0.25     | 0.48       | 0.12       | 0.21      | -0.53        | 1.93       | 0.33                             | 0.98           | 725                                          | 725                                               | 0.10 | 5.0 |                                       | 2.0                | 0.82           | 0  | 0.33         | 0.000   | 0.000                                          | 0.01 |
| 7                              | 581.1 | 2.13   | 3 840                                 | 840                    | 8                    |             | 60                         | ) 1                      | .00 0.           | 80 1.            | . 0C      | 1.00 | 6               | 1.63           | 10                              | 45               | 0.50 | 6        | 16                                | 14                     | 0.17                        | 1.20 | 1.12               | 0.09         | 1.09 | 10       | 0.25     | 0.48       | 0.12       | 0.21      | -0.59        | 2.45       | 0.49                             | 0.97           | 965                                          | 965                                               | 0.10 | 4.9 |                                       | 2.0                | 0.71           | 0  | ).25         | 0.000   | 0.000                                          | 0.01 |
| 9                              | 579.1 | 2.74   | 4 1090                                | 971                    | 4                    |             | 60                         | ) 1                      | .00 0.           | 80 1.            | . 00      | 1.00 | 3               | 1.60           | 5                               | 45               | 0.50 | 6        | 11                                | 9                      | 0.12                        | 1.12 | 1.07               | 0.08         | 1.06 | 10       | 0.25     | 0.48       | 0.12       | 0.21      | -0.45        | 1.46       | 0.20                             | 0.96           | 1215                                         | 1096                                              | 0.11 | 1.9 |                                       | 2.0                | 0.90           | 0  | ).44         | 0.001   | 0.000                                          | 0.01 |
| 11                             | 577.1 | 3.35   | 5 1340                                | 1096                   | 50                   |             | 60                         | ) 1                      | .00 0.           | 85 1.            | . 0C      | 1.00 | 43              | 1.17           | 50                              | 20               | 0.50 | 4        | 54                                | 51                     | 4.13                        | 2.20 | 1.72               | 0.30         | 1.10 | 10       | 0.25     | 0.48       | 0.12       | 0.21      | -0.60        | 2.52       | 19.75                            | 0.95           | 1465                                         | 1221                                              | 0.12 | 5.0 |                                       | 2.0                | -1.93          | 0  | 0.00         | 0.000   | 0.000                                          | 0.00 |
| 13                             | 575.1 | 3.96   | 5 1590                                | 1221                   | 59                   |             | 60                         | ) 1                      | .00 0.           | 85 1.            | . 0C      | 1.00 | 50              | 1.12           | 56                              | 20               | 0.50 | 4        | 61                                | 58                     | 4.13                        | 2.20 | 1.72               | 0.30         | 1.10 | 10       | 0.25     | 0.48       | 0.12       | 0.21      | -0.60        | 2.52       | 19.75                            | 0.93           | 1715                                         | 1346                                              | 0.12 | 5.0 |                                       | 2.0                | -2.47          | 0  | 0.00         | 0.000   | 0.000                                          | 0.00 |
| 15                             | 573.1 | 4.57   | 7 1840                                | 1347                   | 54                   |             | 60                         | ) 1                      | .00 0.           | 85 1.            | . 00      | 1.00 | 46              | 1.11           | 51                              | 20               | 0.50 | 4        | 55                                | 53                     | 4.13                        | 2.20 | 1.72               | 0.30         | 1.10 | 10       | 0.25     | 0.48       | 0.12       | 0.21      | -0.60        | 2.52       | 19.75                            | 0.92           | 1965                                         | 1472                                              | 0.13 | 5.0 |                                       | 2.0                | -2.03          | 0  | 0.00         | 0.000   | 0.000                                          | 0.00 |
| 17                             | 571.1 | 5.18   | 3 2090                                | 1472                   | 46                   |             | 60                         | ) 1                      | .00 0.           | 95 1.            | . 0C      | 1.00 | 44              | 1.09           | 48                              | 20               | 0.50 | 4        | 52                                | 49                     | 4.13                        | 2.20 | 1.72               | 0.30         | 1.10 | 10       | 0.25     | 0.48       | 0.12       | 0.21      | -0.60        | 2.52       | 19.75                            | 0.91           | 2215                                         | 1597                                              | 0.13 | 5.0 |                                       | 2.0                | -1.77          | 0  | 0.00         | 0.000   | 0.000                                          | 0.00 |
| 19                             | 569.1 | 5.79   | 9 2340                                | 1597                   | 32                   |             | 60                         | ) 1                      | .00 0.           | 95 1.            | . 0C      | 1.00 | 30              | 1.10           | 33                              | 20               | 0.50 | 4        | 38                                | 35                     | 2.15                        | 2.20 | 1.72               | 0.24         | 1.06 | 10       | 0.25     | 0.48       | 0.12       | 0.21      | -0.60        | 2.52       | 9.93                             | 0.89           | 2465                                         | 1722                                              | 0.13 | 5.0 |                                       | 1.9                | -0.64          | 0  | 0.01         | 0.000   | 0.000                                          | 0.00 |
| 20.7                           | 567.4 | 4 6.31 | 1 2552                                | 1703                   | 100                  |             | 60                         | ) 1                      | .00 0.           | 95 1.            | · 00      | 1.00 | 95              | 1.01           | 96                              | 20               | 0.50 | 4        | 100                               | 97                     | 4.13                        | 2.20 | 1.72               | 0.30         | 1.06 | 10       | 0.25     | 0.48       | 0.12       | 0.21      | -0.60        | 2.52       | 19.05                            | 0.88           | 2677                                         | 1828                                              | 0.13 | 5.0 |                                       | 2.9                | -6.08          | 0  | 0.00         | 0.000   | 0.000                                          | 0.00 |
| 24.85                          | 563.3 | 3 7.57 | 7 3071                                | 1963                   | 52                   |             | 60                         | ) 1                      | .00 0.           | 95 1.            | · 00      | 1.00 | 49              | 1.02           | 50                              | 20               | 0.50 | 4        | 55                                | 52                     | 4.13                        | 2.20 | 1.72               | 0.30         | 1.02 | 10       | 0.25     | 0.48       | 0.12       | 0.21      | -0.60        | 2.52       | 18.29                            | 0.85           | 3196                                         | 2088                                              | 0.13 | 5.0 |                                       | 3.1                | -1.97          | 0  | 0.00         | 0.000   | 0.000                                          | 0.00 |
| 26.85                          | 561.3 | 8 8.18 | 3 3321                                | 2088                   | 52                   |             | 60                         | ) 1                      | .00 0.           | 95 1.            | · 00      | 1.00 | 49              | 1.00           | 49                              | 20               | 0.50 | 4        | 54                                | 51                     | 4.13                        | 2.20 | 1.72               | 0.30         | 1.00 | 10       | 0.25     | 0.48       | 0.12       | 0.21      | -0.60        | 2.52       | 17.96                            | 0.84           | 3446                                         | 2213                                              | 0.13 | 5.0 |                                       | 1.0                | -1.91          | 0  | 0.00         | 0.000   | 0.000                                          | 0.00 |
|                                |       |        |                                       |                        |                      |             |                            |                          |                  |                  |           |      |                 |                |                                 |                  |      |          |                                   |                        |                             |      |                    |              |      |          |          |            |            |           |              |            |                                  |                |                                              |                                                   |      |     |                                       |                    |                |    |              |         |                                                |      |

 Notes:
 1. Factor of safety calculations limited to 5.0. Actual FS may be greater but shown as 5.0.

 2. Factor of safety presented as 5.0 for Unsaturated and Sitt/Clay soils; not calculated.

 3. Ground surface elevation obtained from boring logs

 4. Fines content was conservatively estimated based on low end of range for soil description provided on log where laboratory test results were not available.

Indicates factors of safety < 1.1, where liquefaction is likely Indicates factors of safety ≥ 1.1 but < 1.4, where settlement due to cyclic strain softening is possible

Calculated By: EK Checked By: JD Date: 3/30/2021 Date: 3/30/2021 Exploration ID: GZ-3



# Liquefaction Depth Profiles



|    | SPT-Based Liquefaction Factor of Safety Calculation                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GZ | Project Name:         Mirror Lake Dam           Project Location:         Storrs, Connecticut           Project Number:         05.0046161.07           Calculations Reference:         Kirss & Boulanger (2014)                                                                                                                                                                                      |                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                |
|    | Elevation Data (at time of drilling):       Drilling Data:         Ground Surface Elevation:       579.9       Typical rod stickup during SPT:       4         Groundwater Elevation:       578.0       Typical rod stickup during SPT:       1.219         Groundwater Depth (ft):       1.9       Borehole Diameter:       4         Unit Weight of Water (pcf):       62.4       578.0       578.0 | ft       Assumed Soil Weight Above Water Table, γ =       120       pcf         2 m       Assumed Soil Weight Below Water Table, γ <sub>sat</sub> =       125       pcf         in       Atmospheric Pressure, P <sub>a</sub> =       2089       psf | Seismic Assumptions (API Preliminary):         Max Accel at Surface, a <sub>max</sub> (g)=         0.159         Design Earthquake Magnitude, M =         6.00         Is void redistribution significant?         No         Earthquake Return Period (yrs)         >2500 | Design Ground Surface Elevation:       579.9         Design Groundwater Elevation:       578.0         Design Groundwater Depth (ft):       1.9         Thickness of New Fill (ft):       0.0         Thickness of New Fill (m):       0.0         Assumed Soil Weight New Fill, γ =       125 |

SPT Correction Factors: Split Spoon Type: LD.=1-3/8 in - Standard Sampler Hammer Type: Auto Hammer

|                               |        |        |                                        |                                      |                    |             | Subsurfa                     | ace Dat    | ta and Pa        | rameter          | Calcula | tions |                 |                |                                 |                 |                |        |                                   |                                   |                              |      |        |              |              |          | Ca       | apacity/De | mand Ratio | o (Factor o | f Safety) Ca | alculations    | •                |                |                                              |                                                   |      |     |                                       |                    |       | Verti | al Settlemen | ıt                        |                                     |     |
|-------------------------------|--------|--------|----------------------------------------|--------------------------------------|--------------------|-------------|------------------------------|------------|------------------|------------------|---------|-------|-----------------|----------------|---------------------------------|-----------------|----------------|--------|-----------------------------------|-----------------------------------|------------------------------|------|--------|--------------|--------------|----------|----------|------------|------------|-------------|--------------|----------------|------------------|----------------|----------------------------------------------|---------------------------------------------------|------|-----|---------------------------------------|--------------------|-------|-------|--------------|---------------------------|-------------------------------------|-----|
| Depth<br>(mid-SP<br>interval) | T Elev | /. Dep | Total<br>oth Stress,<br>σ <sub>v</sub> | Effective<br>Stress, σ' <sub>ν</sub> | N <sub>field</sub> | Flags       | Hamm<br>Energ<br>Ratio<br>ER | er<br>ly C | Ç <sub>E</sub> C | C <sub>R</sub> C | в       | Cs    | N <sub>60</sub> | C <sub>N</sub> | (N <sub>1</sub> ) <sub>60</sub> | Fines<br>Conten | K <sub>0</sub> | ΔN     | (N <sub>1</sub> ) <sub>60CS</sub> | (N <sub>1</sub> ) <sub>60-5</sub> | CRR<br>(M=7.5,<br>σ = 1 atm) | MSFm | ax MSF | $C_{\sigma}$ | $K_{\sigma}$ | Q        | α        | а          | b          | с           | ξĸ           | K <sub>α</sub> | CRR<br>(Μ, σ, α) | r <sub>d</sub> | Design<br>Total<br>Stress,<br>σ <sub>v</sub> | Design<br>Effective<br>Stress,<br>σ' <sub>v</sub> | CSR  | Fs  | Post-<br>Liquef.<br>Shear<br>Strength | Layer<br>Thickness | Fα    | Υlim  | Ύmax         | Vertic<br>recon<br>Strain | cal<br>າsol ∆ເ<br>າ, ε <sub>v</sub> | Si  |
| ft                            | ft     | m      | psf                                    | psf                                  | blows/ft           |             | %                            |            |                  |                  |         |       | blows/ft        |                | blows/ft                        | %               |                | blows/ | t blows/ft                        | blows/f                           | t                            |      |        |              |              | [for Kα] | [for Kα] | [for Kα]   | [for Kα]   | [for Ka]    | [for Kα]     |                |                  |                | psf                                          | psf                                               |      |     | psf                                   | ft                 |       |       |              | ft                        | . ir                                | .n  |
| 1                             | 578.   | 9 0.3  | 0 120                                  | 120                                  | 5                  | Unsaturated | 60                           | 1.0        | 00 0.            | 75 1.            | 00      | 1.00  | 4               | 1.70           | 6                               | 40              | 0.50           | 6      | 12                                | 10                                | 0.13                         | 1.13 | 1.08   | 0.08         | 1.10         | 10       | 0.25     | 0.48       | 0.12       | 0.21        | -0.52        | 1.89           | 0.30             | 1.00           | 120                                          | 120                                               | 0.10 | 5.0 |                                       | 2.0                | 0.86  | 0.38  | 0.000        | ) 0.00                    | JO 0.C                              | 00  |
| 3                             | 576.   | 9 0.9  | 1 366                                  | 297                                  | 18                 |             | 60                           | 1.0        | 00 0.            | 75 1.            | 00      | 1.00  | 14              | 1.70           | 23                              | 40              | 0.50           | 6      | 29                                | 26                                | 0.41                         | 1.62 | 1.37   | 0.15         | 1.10         | 10       | 0.25     | 0.48       | 0.12       | 0.21        | -0.60        | 2.52           | 1.55             | 1.00           | 366                                          | 297                                               | 0.13 | 5.0 |                                       | 2.0                | 0.01  | 0.06  | 0.000        | ) 0.00                    | JO 0.C                              | 00  |
| 5                             | 574.   | 9 1.5  | 2 616                                  | 422                                  | 25                 |             | 60                           | 1.0        | 00 0.            | 75 1.            | 00      | 1.00  | 19              | 1.70           | 32                              | 25              | 0.50           | 5      | 37                                | 34                                | 1.73                         | 2.11 | 1.67   | 0.22         | 1.10         | 10       | 0.25     | 0.48       | 0.12       | 0.21        | -0.60        | 2.52           | 8.00             | 0.99           | 616                                          | 422                                               | 0.15 | 5.0 |                                       | 2.0                | -0.58 | 0.02  | 0.000        | ) 0.00                    | JO 0.C                              | 00  |
| 7                             | 572.   | 9 2.1  | 3 866                                  | 547                                  | 30                 |             | 60                           | 1.0        | 00 0.            | 80 1.            | 00      | 1.00  | 24              | 1.53           | 37                              | 25              | 0.50           | 5      | 42                                | 39                                | 4.13                         | 2.20 | 1.72   | 0.29         | 1.10         | 10       | 0.25     | 0.48       | 0.12       | 0.21        | -0.60        | 2.52           | 19.75            | 0.98           | 866                                          | 547                                               | 0.16 | 5.0 |                                       | 2.0                | -0.94 | 0.01  | 0.000        | ) 0.00                    | JO 0.C                              | 00  |
| 9                             | 570.   | 9 2.7  | 4 1116                                 | 672                                  | 31                 |             | 60                           | 1.0        | 00 0.            | 80 1.            | 00      | 1.00  | 25              | 1.44           | 36                              | 25              | 0.50           | 5      | 41                                | 38                                | 4.13                         | 2.20 | 1.72   | 0.27         | 1.10         | 10       | 0.25     | 0.48       | 0.12       | 0.21        | -0.60        | 2.52           | 19.75            | 0.96           | 1116                                         | 672                                               | 0.17 | 5.0 |                                       | 2.0                | -0.87 | 0.01  | 0.000        | ) 0.00                    | JO 0.C                              | 00  |
| 11                            | 568.   | 9 3.3  | 5 1366                                 | 798                                  | 22                 |             | 60                           | 1.0        | 00 0.            | 85 1.            | 00      | 1.00  | 19              | 1.45           | 27                              | 25              | 0.50           | 5      | 32                                | 29                                | 0.66                         | 1.83 | 1.50   | 0.18         | 1.10         | 10       | 0.25     | 0.48       | 0.12       | 0.21        | -0.60        | 2.52           | 2.74             | 0.95           | 1366                                         | 798                                               | 0.17 | 5.0 |                                       | 2.0                | -0.23 | 0.03  | 0.000        | J 0.00                    | JO 0.C                              | .00 |
| 13                            | 566.   | 9 3.9  | 6 1616                                 | 923                                  | 28                 |             | 60                           | 1.0        | 00 0.            | 85 1.            | 00      | 1.00  | 24              | 1.33           | 32                              | 25              | 0.50           | 5      | 37                                | 34                                | 1.66                         | 2.10 | 1.67   | 0.22         | 1.10         | 10       | 0.25     | 0.48       | 0.12       | 0.21        | -0.60        | 2.52           | 7.67             | 0.94           | 1616                                         | 923                                               | 0.17 | 5.0 |                                       | 2.0                | -0.57 | 0.02  | 0.000        | J 0.00                    | JO 0.C                              | .00 |
| 15                            | 564.   | 9 4.5  | 7 1866                                 | 1048                                 | 28                 |             | 60                           | 1.0        | 00 0.            | 85 1.            | 00      | 1.00  | 24              | 1.28           | 31                              | 25              | 0.50           | 5      | 36                                | 33                                | 1.25                         | 2.03 | 1.62   | 0.21         | 1.10         | 10       | 0.25     | 0.48       | 0.12       | 0.21        | -0.60        | 2.52           | 5.63             | 0.93           | 1866                                         | 1048                                              | 0.17 | 5.0 |                                       | 1.0                | -0.48 | 0.02  | 0.000        | J 0.00                    | JO 0.C                              | .00 |
| 17                            | 562.   | 9 5.1  | 8 2116                                 | 1173                                 | 45                 |             | 60                           | 1.0        | 00 0.            | 95 1.            | 00      | 1.00  | 43              | 1.15           | 49                              | 25              | 0.50           | 5      | 54                                | 51                                | 4.13                         | 2.20 | 1.72   | 0.30         | 1.10         | 10       | 0.25     | 0.48       | 0.12       | 0.21        | -0.60        | 2.52           | 19.75            | 0.91           | 2116                                         | 1173                                              | 0.17 | 5.0 |                                       | 2.0                | -1.94 | 0.00  | 0.000        | J 0.00                    | JO 0.C                              | .00 |
| 18.9                          | 561.   | 0 5.7  | 6 2353                                 | 1292                                 | 84                 |             | 60                           | 1.0        | 00 0.            | 95 1.            | 00      | 1.00  | 80              | 1.04           | 83                              | 25              | 0.50           | 5      | 88                                | 85                                | 4.13                         | 2.20 | 1.72   | 0.30         | 1.10         | 10       | 0.25     | 0.48       | 0.12       | 0.21        | -0.60        | 2.52           | 19.75            | 0.90           | 2353                                         | 1292                                              | 0.17 | 5.0 |                                       | 1.9                | -4.95 | 0.00  | 0.000        | J 0.00                    | JO 0.C                              | .00 |
| 20.45                         | 559.   | 5 6.2  | 3 2547                                 | 1389                                 | 100                |             | 60                           | 1.0        | 00 0.            | 95 1.            | 00      | 1.00  | 95              | 1.01           | 96                              | 25              | 0.50           | 5      | 101                               | 98                                | 4.13                         | 2.20 | 1.72   | 0.30         | 1.10         | 10       | 0.25     | 0.48       | 0.12       | 0.21        | -0.60        | 2.52           | 19.75            | 0.89           | 2547                                         | 1389                                              | 0.17 | 5.0 |                                       | 1.6                | -6.19 | 0.00  | 0.000        | J 0.00                    | JO 0.C                              | .00 |
| 22.45                         | 557.   | 5 6.8  | 4 2797                                 | 1514                                 | 100                |             | 60                           | 1.0        | 00 0.            | 95 1.            | 00      | 1.00  | 95              | 1.01           | 96                              | 25              | 0.50           | 5      | 101                               | 98                                | 4.13                         | 2.20 | 1.72   | 0.30         | 1.10         | 10       | 0.25     | 0.48       | 0.12       | 0.21        | -0.60        | 2.52           | 19.69            | 0.88           | 2797                                         | 1514                                              | 0.17 | 5.0 |                                       | 2.0                | -6.17 | 0.00  | 0.000        | J 0.00                    | JO 0.C                              | .00 |
| 24.05                         | 555.   | 9 7.3  | 3 2997                                 | 1615                                 | 100                |             | 60                           | 1.0        | 00 0.            | 95 1.            | 00      | 1.00  | 95              | 1.01           | 96                              | 25              | 0.50           | 5      | 101                               | 98                                | 4.13                         | 2.20 | 1.72   | 0.30         | 1.08         | 10       | 0.25     | 0.48       | 0.12       | 0.21        | -0.60        | 2.52           | 19.34            | 0.86           | 2997                                         | 1615                                              | 0.17 | 5.0 |                                       | 1.6                | -6.15 | 0.00  | 0.000        | ) 0.00                    | )0 0.0                              | 00  |

 Notes:
 1. Factor of safety calculations limited to 5.0. Actual FS may be greater but shown as 5.0.

 2. Factor of safety presented as 5.0 for Unsaturated and Silt/Clay soils; not calculated.

 3. Ground surface elevation obtained from boring logs

 4. Fines content was conservatively estimated based on low end of range for soil description provided on log where laboratory test results were not available.

Indicates factors of safety < 1.1, where liquefaction is likely Indicates factors of safety  $\geq$  1.1 but < 1.4, where settlement due to cyclic strain softening is possible

Calculated By: EK Checked By: JD Date: 3/30/2021 Date: 3/30/2021 Exploration ID: GZ-4



# Liquefaction Depth Profiles



| GZA                    | Engineers and | JOB           |    | 05.0046161.07 |          |
|------------------------|---------------|---------------|----|---------------|----------|
| GeoEnvironmental, Inc. | Scientists    | SHEET NO.     | 1  | OF            | 2        |
| 249 Vanderbilt Avenue  |               | CALCULATED BY | EK | DATE          | 4/2/2021 |
| Norwood, MA 02062      |               | CHECKED BY    | JD | DATE          | 4/2/2021 |
| 781-278-3700           |               | SCALE         |    |               |          |
| FAX 781-278-5701       |               |               |    |               |          |
| http://www.gza.com     |               |               |    |               |          |

#### PURPOSE / SCOPE:

1. Estimate the acceleration to be used in the pseudostatic SLOPE/w analyses to estimate the resistance to global instability under seismic loading conditions.

**REFERENCES:** 

1

The following technical references were used in preparing this calculation:

- 1. Transportation Research Board (2008). "Seismic Analysis and Design of Retaining Walls, Buried Structures, Slopes, and Embankments". NCRHP Report 611.
- 2. FHWA (2011). "LRFD Seismic Analysis and Design of Transportation Geotechnical Features and Structural Foundations Reference Manual". Publication No. FHWA NHI-11-032.
- 3. ASCE 7 Hazard Tool. Accessed 4/1/2021, from https://asce7hazardtool.online/
- 4. ASCE (2016). "Minimum Design Loads for Buildings and Other Structures". ASCE Standard 7-16.

### **ASSUMPTIONS:**

1. "Site Class D - Stiff Soil", and "Risk Category IV - Essential Facilities" has been assumed in the development of of ground motion parameters.

### METHODOLOGY:

### Step 1: Obtain bedrock ground motion parameters for site.

Based on ASCE 7 Hazard Tool, the bedrock ground motion parameters for the site coordinates are as follows:

| PGA | Ss    | S <sub>1</sub> |
|-----|-------|----------------|
| 0.1 | 0.185 | 0.055          |

See attached output from ASCE website.

### Step 2: Adjust bedrock ground motions for site conditions.

The ground motion parameters above were adjusted to reflect the assumption of Site Class D profile, using the following equations:

$$S_{M1} = F_v \cdot S_1$$
$$PGA_M = F_{PGA} \cdot PGA$$

In accordance with Sections 11.4.3 and 11.8.3 of the ASCE 7-16 Standard:

$$F_v = 2.4$$
  
 $F_{PGA} = 1.6$ 

The resulting site-adjusted ground motion parameters are as follows:

$$S_{M1} = 0.132 \text{ g}$$
  
PGA<sub>M</sub> = 0.160 g

# Step 3: Adjust the peak ground acceleration for slope height and ground motion characteristics to obtain the maximum average acceleration acting on the slope.

Equation 7-1 of Reference 1 was used to adjust the peak ground acceleration determined in Step 2, based on the slope height and the spectral acceleration for the site.

$$k_{av} = \alpha \cdot PGA_M$$

where  $\alpha$  is the slope height reduction factor, determined by Equation 7-2 of Reference 1, below.

$$\alpha = 1 + 0.01 \cdot H \cdot (0.5 \cdot \beta - 1)$$



GZA GeoEnvironmental, Inc. 249 Vanderbilt Avenue Norwood, MA 02062 781-278-3700 FAX 781-278-5701 http://www.gza.com

| JOB           |    | 05.0046161.07 |          |
|---------------|----|---------------|----------|
| SHEET NO.     | 2  | OF            | 2        |
| CALCULATED BY | EK | DATE          | 4/2/2021 |
| CHECKED BY    | JD | DATE          | 4/2/2021 |
| SCALE         |    |               |          |
|               |    |               |          |

### Step 3 - Continued

The H term in the above equation represents the vertical slope height, in feet.  $\beta$  is a function of the shape of the acceleration response spectrum, and provided in Reference 1 as:

$$\beta = \frac{S_{M1}}{PGA_M}$$

Engineers and

Scientists

Based on the parameters from Step 2, and a slope height , H = \_\_\_\_\_\_\_feet

 $\beta = 0.825$  $\alpha = 0.932$ 

Peak average seismic coefficient,  $k_{av} = 0.149$  g

### Step 4: Establish k<sub>s</sub> and FS based on allowable displacement.

According to References 1 and 2, if the peak average seismic coefficient is used in a pseudostatic analysis, then a factor of safety of 1.0 or more implies no slope movement. If the peak average coefficient is reduced by 50% (as is typically done) then a factor of safety greater than 1.1 to 1.3 implies minimal deformation, assuming the slope can accommodate 1 to 2 inches of permanent seismic displacement.

Therefore, the accelerations that could be used in the pseudostatic slope stability analyses are as follows:

| FS > 1.0 and no permanent deformation,                   | k <sub>av</sub> = | 0.149 | g |
|----------------------------------------------------------|-------------------|-------|---|
| FS > 1.1 to 1.3 and 1-2 inches of permanent deformation, | k <sub>s</sub> =  | 0.075 | g |





| Color | Name                           | Sat<br>Kx<br>(ft/d) |
|-------|--------------------------------|---------------------|
|       | Bedrock                        | 0.0002              |
|       | Boulder Wall                   | 0.02                |
|       | Embankment<br>Fill             | 0.02                |
|       | Glacial Till                   | 0.7                 |
|       | Improved<br>Embankment<br>Fill | 0.02                |
|       | Structural Fill                | 3                   |
|       | Toe Drain                      | 30                  |



| Color | Name                           | Sat<br>Kx<br>(ft/d) |
|-------|--------------------------------|---------------------|
|       | Bedrock                        | 0.0002              |
|       | Boulder Wall                   | 0.02                |
|       | Embankment<br>Fill             | 0.02                |
|       | Glacial Till                   | 0.7                 |
|       | Improved<br>Embankment<br>Fill | 0.02                |
|       | Structural Fill                | 3                   |
|       | Toe Drain                      | 30                  |





\gzaglast)jobs\\_46,000-46,499\46161.h61 University of Connecticut\46161-07.jfd\Calculations\Seep & Slope Model\

| Color | Name                           | Sat<br>Kx<br>(ft/d) |
|-------|--------------------------------|---------------------|
|       | Bedrock                        | 0.0002              |
|       | Boulder Wall                   | 0.02                |
|       | Embankment<br>Fill             | 0.02                |
|       | Glacial Till                   | 0.7                 |
|       | Improved<br>Embankment<br>Fill | 0.02                |
|       | Structural Fill                | 3                   |
|       | Toe Drain                      | 30                  |



| ght<br>) | Effective<br>Cohesion<br>(psf) | Effective<br>Friction<br>Angle (°) | Cohesion<br>R (psf) | Phi<br>R (°) |
|----------|--------------------------------|------------------------------------|---------------------|--------------|
|          | Impenetr                       | able materia                       | <br>                |              |
|          | 0                              | 35                                 | 1                   | 34           |
|          | 0                              | 29                                 | 300                 | 10           |
|          | 0                              | 38                                 | 1                   | 37           |
|          | 0                              | 32                                 | 300                 | 10           |
|          | 0                              | 34                                 | 1                   | 33           |
|          | 0                              | 33                                 | 1                   | 32           |



| ght<br>) | Effective<br>Cohesion<br>(psf) | Effective<br>Friction<br>Angle (°) | Cohesion<br>R (psf) | Phi<br>R (°) |
|----------|--------------------------------|------------------------------------|---------------------|--------------|
|          | Impenetr                       | able materia                       | <br>                |              |
|          | 0                              | 35                                 | 1                   | 34           |
|          | 0                              | 29                                 | 300                 | 10           |
|          | 0                              | 38                                 | 1                   | 37           |
|          | 0                              | 32                                 | 300                 | 10           |
|          | 0                              | 34                                 | 1                   | 33           |
|          | 0                              | 33                                 | 1                   | 32           |



| Name                           | Unit<br>Weight<br>(pcf) | Effective<br>Cohesion<br>(psf) | Effective<br>Friction<br>Angle (°) |
|--------------------------------|-------------------------|--------------------------------|------------------------------------|
| Bedrock                        | Impenetrable material   |                                |                                    |
| Boulder Wall                   | 130                     | 0                              | 35                                 |
| Embankment<br>Fill             | 120                     | 0                              | 29                                 |
| Glacial Till                   | 130                     | 0                              | 38                                 |
| Improved<br>Embankment<br>Fill | 120                     | 0                              | 32                                 |
| Structural Fill                | 125                     | 0                              | 34                                 |
| Toe Drain                      | 120                     | 0                              | 33                                 |



| Name                           | Unit<br>Weight<br>(pcf) | Effective<br>Cohesion<br>(psf) | Effective<br>Friction<br>Angle (°) |
|--------------------------------|-------------------------|--------------------------------|------------------------------------|
| Bedrock                        | Impenetrable material   |                                |                                    |
| Boulder Wall                   | 130                     | 0                              | 35                                 |
| Embankment<br>Fill             | 120                     | 0                              | 29                                 |
| Glacial Till                   | 130                     | 0                              | 38                                 |
| Improved<br>Embankment<br>Fill | 120                     | 0                              | 32                                 |
| Structural Fill                | 125                     | 0                              | 34                                 |
| Toe Drain                      | 120                     | 0                              | 33                                 |



\lgzaglast\jobs\\_46,000-46,499\46161.h61 University of Connecticut\46161-07.jfd\Calculations\Seep & Slope Model\

| Name                           | Unit<br>Weight<br>(pcf) | Effective<br>Cohesion<br>(psf) | Effective<br>Friction<br>Angle (°) |
|--------------------------------|-------------------------|--------------------------------|------------------------------------|
| Bedrock                        | Impenetrable material   |                                |                                    |
| Boulder Wall                   | 130                     | 0                              | 35                                 |
| Embankment<br>Fill             | 120                     | 0                              | 29                                 |
| Glacial Till                   | 130                     | 0                              | 38                                 |
| Improved<br>Embankment<br>Fill | 120                     | 0                              | 32                                 |
| Structural Fill                | 125                     | 0                              | 34                                 |
| Toe Drain                      | 120                     | 0                              | 33                                 |



\lgzaglast\jobs\\_46,000-46,499\46161.h61 University of Connecticut\46161-07.jfd\Calculations\Seep & Slope Model\

| Name                           | Unit<br>Weight<br>(pcf) | Effective<br>Cohesion<br>(psf) | Effective<br>Friction<br>Angle (°) |
|--------------------------------|-------------------------|--------------------------------|------------------------------------|
| Bedrock                        | Impenetrable material   |                                |                                    |
| Boulder Wall                   | 130                     | 0                              | 35                                 |
| Embankment<br>Fill             | 120                     | 0                              | 29                                 |
| Glacial Till                   | 130                     | 0                              | 38                                 |
| Improved<br>Embankment<br>Fill | 120                     | 0                              | 32                                 |
| Structural Fill                | 125                     | 0                              | 34                                 |
| Toe Drain                      | 120                     | 0                              | 33                                 |



| Name                           | Unit<br>Weight<br>(pcf) | Effective<br>Cohesion<br>(psf) | Effective<br>Friction<br>Angle (°) |
|--------------------------------|-------------------------|--------------------------------|------------------------------------|
| Bedrock                        | Impenetrable material   |                                |                                    |
| Boulder Wall                   | 130                     | 0                              | 35                                 |
| Embankment<br>Fill             | 120                     | 0                              | 29                                 |
| Glacial Till                   | 130                     | 0                              | 38                                 |
| Improved<br>Embankment<br>Fill | 120                     | 0                              | 32                                 |
| Structural Fill                | 125                     | 0                              | 34                                 |
| Toe Drain                      | 120                     | 0                              | 33                                 |



| Name                           | Unit<br>Weight<br>(pcf) | Effective<br>Cohesion<br>(psf) | Effective<br>Friction<br>Angle (°) |
|--------------------------------|-------------------------|--------------------------------|------------------------------------|
| Bedrock                        | Impenetrable material   |                                |                                    |
| Boulder Wall                   | 130                     | 0                              | 35                                 |
| Embankment<br>Fill             | 120                     | 0                              | 29                                 |
| Glacial Till                   | 130                     | 0                              | 38                                 |
| Improved<br>Embankment<br>Fill | 120                     | 0                              | 32                                 |
| Structural Fill                | 125                     | 0                              | 34                                 |
| Toe Drain                      | 120                     | 0                              | 33                                 |



**APPENDIX I – GRAVITY ANALYSIS CALCULATIONS** 



GZA GeoEnvironmental, Inc. 249 Vanderbilt Ave Norwood, MA 02062 781-278-3700 FAX 781-278-5701 http://www.gza.com

| JOB:           | 05.0046161.07 | Mirror Lal | ke Dam   |
|----------------|---------------|------------|----------|
| SHEET NO.:     | 1             | OF         | 34       |
| CALCULATED BY: | EK            | DATE:      | 4/1/2021 |
| CHECKED BY:    | JGD           | DATE:      | 4/1/2021 |
|                |               |            |          |

(Unit Definition - Click Arrow to Expand)

## **Objective:**

To perform stability analysis of **Mirror Lake Dam**, **proposed spillway cross section** using assumption of cracked base where applicable, and calculate factors of safety against sliding and to evaluate overturning stability under proposed conditions.

## Design Methodology:

- Evaluate stability using conventional equilibrium analyses and limit state theory
- Calculate base pressures with and without considering uplift effects
- Determine non-compression zone, where a cracked section is assumed to have developed cracked area and is assumed to be subjected to full headwater pressure.
- Uplift pressure profile is revised and a cracked length is obtained using an iterative solution per USACE methodology

## References:

- "Evaluation of Concrete Dam Safety" by ASDSO. Northeast Regional Technical Seminar
- "Gravity Dam Design" by USACE EM1110-2-2200, Jun 1995
- "Stability Analysis of Concrete Structures" by USACE EM1110-2-2100, Dec 2005
- "Design of Small Dams" by US Bureau of Reclamation, 1977
- "Evaluation and comparison of stability analysis and uplift criteria for concrete gravity dams by three federal agencies" by USACE ERDC/ITL TR-00-1, Jun 2000

## Case Descriptions - Loading Conditions:

(Per US Army Corps of Engineers)

Case #1: Normal water levels Case #2: Flood (500 yr) water levels Case #3: Normal water levels + ice Case #4: Normal water levels + earthquake

## Assumptions:

- Full upstream hydraulic head applied to cracked length and is linearly interpolated to downstream hydraulic head over uncracked length (depending on efficiency and location of relief wells)
- Pseudostatic method for seismic analysis (apply horizontal acceleration as a % of g)
- Summation of moments about the centerline of the base
- Plane of analysis at dam/foundation interface (El. 573)
- Bedrock-Dam interface friction angle = 29 deg

Notes for MathCAD User (No Calculations)



**Input Parameters** 

GZA GeoEnvironmental, Inc. 249 Vanderbilt Ave

Norwood, MA 02062 781-278-3700 FAX 781-278-5701 http://www.gza.com

| JOB:           | 05.0046161.07 | Mirror La | ke Dam   |
|----------------|---------------|-----------|----------|
| SHEET NO.:     | 2             | _ OF      | 34       |
| CALCULATED BY: | EK            | DATE:     | 4/1/2021 |
| CHECKED BY:    | JGD           | DATE:     | 4/1/2021 |
|                |               |           | 11/2021  |

| 1) <u>Dam Geometry:</u>                          |                                                                                                            |                                                                                                                                                 |
|--------------------------------------------------|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| Total Base width                                 | B := 18ft                                                                                                  |                                                                                                                                                 |
| Toe base width                                   | $B_1 := 2ft$                                                                                               |                                                                                                                                                 |
| heel width                                       | $B_3 := Oft$                                                                                               |                                                                                                                                                 |
| Crest width                                      | $B_2 := B - B_1 - B_3 = 16  \text{ft}$                                                                     |                                                                                                                                                 |
| Height of toe slope                              | $H_1 := 10.5 ft$                                                                                           |                                                                                                                                                 |
| Height of heel slope                             | $H_3 := 14ft$                                                                                              |                                                                                                                                                 |
| Analysis length                                  | LF := 1ft                                                                                                  |                                                                                                                                                 |
| Dam base elevation                               | $EL_b := 573 ft$                                                                                           |                                                                                                                                                 |
| Dam crest elevation                              | $\mathrm{EL}_{\mathrm{c}} \coloneqq \mathrm{EL}_{\mathrm{b}} + \mathrm{H}_{\mathrm{3}} = 587  \mathrm{ft}$ |                                                                                                                                                 |
| Top elevation of heel slope                      | $EL_{B3} := EL_b + H_3 = 587  ft$                                                                          |                                                                                                                                                 |
| Dam height                                       | $H_{dam} := EL_c - EL_b = 14  ft$                                                                          |                                                                                                                                                 |
| Dam heel slope height                            | $H_{slp}B3 := EL_{B3} - EL_{b} = 1$                                                                        | 4 ft                                                                                                                                            |
| Downstream batter angle<br>(from vertical)       | $\theta_d := 0$ °                                                                                          |                                                                                                                                                 |
| Upstream batter angle (from vertical)            | $ \theta_{\rm u} := \operatorname{atan}\left(\frac{{\rm B}_3}{{\rm H}_3}\right) = 0.^{\circ} $             |                                                                                                                                                 |
| Inclination angle of base                        | $\beta := 0 \text{deg}$                                                                                    |                                                                                                                                                 |
| Sliding direction<br>(upslope / downslope to DS) | $f_{\beta} := 1$                                                                                           | (+1 sloping down to DS; and -1 sloping up to DS)                                                                                                |
| Drainage Gallery base elevation                  | $EL_{dg} := EL_{b} = 573 \text{ ft}$                                                                       | (No drainage gallery in this section)                                                                                                           |
| Drain Effectiveness                              | $E_{dr} := 0\%$                                                                                            | (fully effective = 100%; ineffective = 0%)<br>EM 1110-2-2200 limits effectiveness to between<br>25% and 50% without site-specific measurements. |
| Distance of drain to heel                        | $d_{dr} \coloneqq 0ft$                                                                                     | (set to zero if no drain installed)                                                                                                             |
| Shear Key Area                                   | $A_{shear} := 0 ft^2$                                                                                      | (set to zero if no shear keys present)                                                                                                          |
| Shear Key Cohesion                               | c <sub>shear</sub> := 0psf                                                                                 | (set to zero if no shear keys present)                                                                                                          |

Engineers and Scientists



GZA GeoEnvironmental, Inc. 249 Vanderbilt Ave Norwood, MA 02062 781-278-3700 FAX 781-278-5701 http://www.gza.com

1) Dam Geometry (continued): Refer to Figure #1

| Engineers and |  |
|---------------|--|
| Scientists    |  |

| JOB:           | 05.0046161.07 | Mirror Lak | e Dam    |
|----------------|---------------|------------|----------|
| SHEET NO.:     | 3             | OF         | 34       |
| CALCULATED BY: | EK            | DATE:      | 4/1/2021 |
| CHECKED BY:    | JGD           | DATE:      | 4/1/2021 |
|                |               |            |          |

Geometry based on CAD

| Assume coordinates of h           | eel (0,0)                                              |  |
|-----------------------------------|--------------------------------------------------------|--|
| W1: Concrete Spillway cross-se    | ection                                                 |  |
| $X_{Centroid.W1} \coloneqq 8ft$   | $Y_{Centroid.W1} = 7ft$                                |  |
| $Area_{W1} := 224 ft^2$           | $Volume_{W1} := Area_{W1} \cdot LF = 224 \text{ ft}^3$ |  |
| W2: Concrete Spillway cross-      | section                                                |  |
| $X_{Centroid.W2} \coloneqq 17 ft$ | $Y_{Centroid.W2} = 5.25 ft$                            |  |
| $Area_{W2} \coloneqq 21 ft^2$     | $Volume_{W2} := Area_{W2} \cdot LF = 21 \text{ ft}^3$  |  |
| ▶ N/A Fields                      |                                                        |  |
| 2) General Design Elevations      |                                                        |  |
| Flood pool elevation              | $EL_{fw} \coloneqq 589ft$                              |  |
|                                   |                                                        |  |

### 3) Case Specific Loads, Dimensions and Elevations

Normal pool elevation



 $EL_{nw} := 583.5 ft$ 



**GZA GeoEnvironmental, Inc.** 249 Vanderbilt Ave Norwood, MA 02062 781-278-3700 FAX 781-278-5701

http://www.gza.com

Engineers and Scientists

| JOB:           | 05.0046161.07 | Mirror La | ike Dam  |
|----------------|---------------|-----------|----------|
| SHEET NO.:     | 4             | OF        | 34       |
| CALCULATED BY: | EK_           | DATE:     | 4/1/2021 |
| CHECKED BY:    | JGD           | DATE:     | 4/1/2021 |

| 4) Basic Material Properties          |                                                                                                         |                                                        |
|---------------------------------------|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| Cohesion between dam/foundation       | c <sub>0</sub> := 0psi                                                                                  | (Initial assumption)                                   |
| Cohesion between dam/foundation       | c <sub>dam</sub> ≔ c <sub>0</sub>                                                                       | (Based on lab test data and field observations)        |
| Interface friction angle              | $\phi_{dam} := 29^{\circ}$                                                                              | (Based on lab test data)                               |
| Allowable foundation bearing capacity | BC := 13.4ksf                                                                                           |                                                        |
| Maximum compressive strength of dam:  | Cu <sub>dam</sub> := 3000psi                                                                            | (per USACE 1110-2-2006)                                |
| Unit weight of dam material           | $\gamma_{dam} \coloneqq 150 \text{pcf}$<br>$\gamma_c \coloneqq 150 \text{pcf}$                          | (based on slope stability analysis assumed parameters) |
| Unit weight of Fill material          | $\frac{\gamma_{\text{fillus}} \coloneqq 130\text{pcf}}{\gamma_{\text{fillds}} \coloneqq 130\text{pcf}}$ | (based on slope stability analysis assumed parameters) |
| Fill internal frictional angle        | $\phi_{\text{fill}} \coloneqq 38^{\circ}$                                                               |                                                        |



GZA GeoEnvironmental, Inc. 249 Vanderbilt Ave Norwood, MA 02062 781-278-3700 FAX 781-278-5701 http://www.gza.com

. . . . .

| JOB:           | 05.0046161.07 | Mirror La | ake Dam  |
|----------------|---------------|-----------|----------|
| SHEET NO.:     | 5             | OF        | 34       |
| CALCULATED BY: | EK            | DATE:     | 4/1/2021 |
| CHECKED BY:    | JGD           | DATE:     | 4/1/2021 |

| 5) | Design Factor of Safety (FS) against sliding |                       |                    |                    |                        |
|----|----------------------------------------------|-----------------------|--------------------|--------------------|------------------------|
|    | US Army Corps of Engineers                   |                       |                    |                    |                        |
| ľ  | Required Factor of Safety                    |                       |                    |                    | Factor of Safety       |
|    | Case                                         |                       | Loading Conditions | Ordinary Site Info | Well Defined Site Info |
|    | 1                                            | Normal Pool           | Usual              | 2                  | 1.7                    |
|    | 2                                            | 100-year Flood        | Unusual            | 1.7                | 1.1                    |
|    | 3                                            | Normal Pool + Ice     | Usual              | 2                  | 1.7                    |
|    | 4                                            | Normal Pool + Seismic | Extreme            | 1.3                | 1.1                    |

| Factors of Safety |  |
|-------------------|--|
| Used in Analysis  |  |
| (Ordinary)        |  |

|   |                              | (2.0) |
|---|------------------------------|-------|
| Б |                              | 1.7   |
| F | 'S_SLIDING <sub>min</sub> := | 2.0   |
|   |                              | (1.3) |

Case #1 Case #2 - See Notes Case #3 Case #4 - See Notes

Factor of Safety Notes

- 100-year storm is considered "Unusual" due to return period of greater than 10 years but less than or equal to 300 yr, in accorcance with EM 1110-2-2100.

Misc, Input Parameter Notes (No Calculations)



GZA GeoEnvironmental, Inc. 249 Vanderbilt Ave Norwood, MA 02062 781-278-3700 FAX 781-278-5701 http://www.gza.com

Engineers and Scientists

| JOB:          | 05.0046161.07 | Mirror L | ake Dam  |
|---------------|---------------|----------|----------|
| SHEET NO.:    | 6             | OF       | 34       |
| CALCULATED BY | : <u>ЕК</u>   | DATE:    | 4/1/2021 |
| CHECKED BY:   | JGD           | DATE:    | 4/1/2021 |

| LOAD CASE #1 - Normal Pool                      |                                                                                            |  |
|-------------------------------------------------|--------------------------------------------------------------------------------------------|--|
| A. Dam self-weights - (Refer to FBD for dam g   | eometry, variable notation, and sign convention)                                           |  |
| Weight of individual Dam                        | $W_1 := -Area_{W1} \cdot \gamma_{dam} \cdot LF = -33.6 \cdot kip$                          |  |
| Sections                                        | $W_2 := -Area_{W2} \cdot \gamma_{dam} \cdot LF = -3.15 \cdot kip$                          |  |
|                                                 | $W_3 := -Area_{W3} \cdot \gamma_{dam} \cdot LF = 0 \cdot kip$                              |  |
|                                                 | $W_4 := -Area_{W4} \cdot \gamma_{dam} \cdot LF = 0 \cdot kip$                              |  |
| $\Sigma$ Weights of Dam                         | $W_{dam} := W_1 + W_2 + W_3 + W_4 = -36.75 \cdot kip$                                      |  |
| Moment arms about Center of Base:               | $D_1 := X_{\text{Centroid.W1}} - \frac{B}{2} = -1 \text{ ft}$                              |  |
|                                                 | $D_2 := X_{\text{Centroid.W2}} - \frac{B}{2} = 8 \text{ ft}$                               |  |
|                                                 | $D_3 := 0$ ft                                                                              |  |
|                                                 | $D_4 := 0$ ft                                                                              |  |
| Moments due to vertical forces about centerlin  | e:                                                                                         |  |
|                                                 | $M_1 := W_1 \cdot D_1 = 33.6 \cdot kip \cdot ft$                                           |  |
|                                                 | $M_2 := W_2 \cdot D_2 = -25.2 \cdot kip \cdot ft$                                          |  |
|                                                 | $\mathbf{M}_3 := \mathbf{W}_3 \cdot \mathbf{D}_3 = 0 \cdot \mathbf{kip} \cdot \mathbf{ft}$ |  |
|                                                 | $\mathbf{M}_4 := \mathbf{W}_4 \cdot \mathbf{D}_4 = 0 \cdot \mathbf{kip} \cdot \mathbf{ft}$ |  |
| $\Sigma$ Dam Weight Moments about centerline of | Dam                                                                                        |  |
| M <sub>d</sub>                                  | $am := M_1 + M_2 + M_3 + M_4 = 8.4 \cdot kip \cdot ft$                                     |  |
| Headwater (Vertical)                            |                                                                                            |  |
| ▶ Field: Tailwater ▶ Vertical Soil Load         |                                                                                            |  |
| ▶ N/A Field: Upstream Silt                      |                                                                                            |  |
|                                                 |                                                                                            |  |
|                                                 |                                                                                            |  |


| JOB:          | 05.0046161.07 | Mirror La | ake Dam  |
|---------------|---------------|-----------|----------|
| SHEET NO.:    | 7             | _ OF      | 34       |
| CALCULATED BY | : <u> </u>    | DATE:     | 4/1/2021 |
| CHECKED BY:   | JGD           | _DATE:    | 4/1/2021 |

## E. Uplift Pressure:

Height of drainage gallery to plane of analysis

Effective Hydraulic Head at Drainage Gallery,  $\mathbf{H}_{\rm dr}$ 

$$H_{dr} := \begin{bmatrix} (1 - E_{dr}) \cdot \left[ (H_{uw_1} - H_{dw_1}) \frac{B - d_{dr}}{B} + H_{dw_1} - H_{dg} \right] + H_{dg} & \text{if } H_{dg} \ge H_{dw_1} = 10.5 \cdot \text{ft} \\ (1 - E_{dr}) \cdot \left( H_{uw_1} - H_{dw_1} \right) \cdot \frac{B - d_{dr}}{B} + H_{dw_1} & \text{otherwise} & \text{based on drain effective} \end{bmatrix}$$

Engineers and Scientists

 $H_{dg} := EL_{dg} - EL_{b} = 0 \text{ ft}$ 

effectiveness 
$$E_{dr} = 0.\%$$

| Head at heel                                                       | $H_{heel} := H_{uw_1} = 10.5  \text{ft}$                                                                                                 |
|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| Head at toe                                                        | $H_{toe} := H_{dw_1} = 2.9  \text{ft}$                                                                                                   |
| Uplift Pressure at Heel                                            | $u_{up\_us} := H_{uw_1} \cdot \gamma_w = 0.655 \cdot ksf$                                                                                |
| Uplift Pressure at Toe                                             | $u_{up_ds} := H_{toe} \cdot \gamma_w = 0.181 \cdot ksf$                                                                                  |
| Uplift Pressure below Drainage Gallery                             | $u_{up_dg} := H_{dr} \cdot \gamma_w = 0.655 \cdot ksf$                                                                                   |
| Uplift forces below dam base:<br><i>Refer to FBD for notation:</i> | $U_1 := u_{up_ds} \cdot (B - d_{dr}) \cdot LF = 3.257 \cdot kip$                                                                         |
|                                                                    | $U_2 := \frac{1}{2} \left( u_{up\_dg} - u_{up\_ds} \right) \cdot \left( B - d_{dr} \right) \cdot LF = 4.268 \cdot kip$                   |
|                                                                    | $U_3 := u_{up\_dg} \cdot d_{dr} \cdot LF = 0 \cdot kip$                                                                                  |
|                                                                    | $U_4 := \frac{1}{2} \left( u_{up\_us} - u_{up\_dg} \right) \cdot d_{dr} \cdot LF = 0 \cdot kip$                                          |
| $\Sigma$ Uplift Forces =                                           | $U := U_1 + U_2 + U_3 + U_4 = 7.525 \cdot kip$                                                                                           |
| Moment arms of Uplift Forces                                       |                                                                                                                                          |
|                                                                    | $\mathbf{d_{up1}} \coloneqq \frac{1}{2} \cdot \left( \mathbf{B} - \mathbf{d_{dr}} \right) - \frac{1}{2} \cdot \mathbf{B} = 0 \text{ ft}$ |
|                                                                    | $d_{up2} := \frac{2}{3} \cdot \left( \mathbf{B} - d_{dr} \right) - \frac{1}{2} \mathbf{B} = 3 \text{ ft}$                                |
|                                                                    | $d_{up3} := (B - d_{dr}) + \frac{1}{2}d_{dr} - \frac{1}{2}B = 9 \text{ ft}$                                                              |
|                                                                    | $d_{up4} := (B - d_{dr}) + \frac{2}{3} \cdot d_{dr} - \frac{1}{2}B = 9 \text{ ft}$                                                       |



| JOB:           | 05.0046161.07 | Mirror Lak | e Dam    |
|----------------|---------------|------------|----------|
| SHEET NO.:     | 8             | OF         | 34       |
| CALCULATED BY: | <u>EK</u>     | DATE:      | 4/1/2021 |
| CHECKED BY:    | JGD           | DATE:      | 4/1/2021 |

## Moments due to Uplift Components

| $M_{up1} := U_1 \cdot d_{up1} = 0$ | J•kip•ft                                                               |
|------------------------------------|------------------------------------------------------------------------|
| $M_{up2} := U_2 \cdot d_{up2} =$   | 12.804·kip·ft                                                          |
| $M_{up3} := U_3 \cdot d_{up3} = 0$ | 0                                                                      |
| $M_{up4} := U_4 \cdot d_{up4} = 0$ | 0                                                                      |
| $M_{up} := M_{up1} + M_{up}$       | $M_{02} + M_{up3} + M_{up4} = 12.804 \cdot \text{kip} \cdot \text{ft}$ |

 $\Sigma$  Uplift Moments =

**II. INITIAL HORIZONTAL FORCES AND MOMENTS:** 

#### A. Headwater: (Horizontal Component)

Horizontal Component of  
Headwater on Dam
$$F_{uwa.x} \coloneqq \begin{bmatrix} \gamma_{w} \cdot (H_{uw_{1}} - H_{dam}) \cdot H_{dam} \cdot LF \text{ if } H_{ov}(H_{water\_over\_crest}) > 0 = 0 \cdot kip \\ 0 \text{ otherwise} \end{bmatrix}$$

$$F_{uwb.x} \coloneqq \begin{bmatrix} \frac{1}{2} \gamma_{w} \cdot H_{dam}^{2} \cdot LF \text{ if } H_{ov}(H_{water\_over\_crest}) > 0 = 3.44 \cdot kip \\ \frac{1}{2} \gamma_{w} \cdot (H_{uw_{1}})^{2} \cdot LF \text{ otherwise} \end{bmatrix}$$

 $\Sigma$  Horizontal Forces by Headwater

$$F_{uw.x} := F_{uwa.x} + F_{uwb.x} = 3.44 \text{ kip}$$

Moment arms of  
Headwater on Dam
$$\operatorname{arm}_{uwa.y} \coloneqq \begin{bmatrix} \frac{H_{dam}}{2} & \text{if } H_{ov}(H_{water\_over\_crest}) > 0 = 0 \cdot \text{ft} \\ 0 & \text{otherwise} \end{bmatrix}$$
 $\operatorname{arm}_{uwb.y} \coloneqq \begin{bmatrix} \frac{1}{3}H_{dam} & \text{if } H_{ov}(H_{water\_over\_crest}) > 0 = 3.5 \cdot \text{ft} \\ \frac{H_{uw_1}}{3} & \text{otherwise} \end{bmatrix}$ Moment due to  
Headwater on DamMoments due to Headwater $M_{uwa.x} \coloneqq F_{uwa.x} \cdot \operatorname{arm}_{uwb.y} = 0 \cdot \operatorname{kip} \cdot \text{ft} \\ M_{uwb.x} \coloneqq F_{uwb.x} \cdot \operatorname{arm}_{uwb.y} = 12.039 \cdot \operatorname{kip} \cdot \text{ft} \end{bmatrix}$  $\Sigma$  Moments due to Headwater



| Engineers and |  |
|---------------|--|
| Scientists    |  |

| JOB:           | 05.0046161.07 | Mirror La | ake Dam  |
|----------------|---------------|-----------|----------|
| SHEET NO.:     | 9             | OF        | 34       |
| CALCULATED BY: | <u></u>       | DATE:     | 4/1/2021 |
| CHECKED BY:    | JGD           | DATE:     | 4/1/2021 |
|                |               |           |          |

Field: Tailwater

| B. Tailwater: | (Horizontal Component |
|---------------|-----------------------|
|---------------|-----------------------|

| Horizontal Force due to | С |
|-------------------------|---|
| Tailwater               |   |

$$F_{dw.x} := \frac{-1}{2} \gamma_{w} \cdot \left(H_{dw_1}\right)^2 \cdot LF = -0.262 \text{ kip}$$

Moment arm of Tailwater

 $\operatorname{arm}_{dw,y} \coloneqq \frac{1}{3} \operatorname{H}_{dw_1} = 0.967 \, \mathrm{ft}$  $\operatorname{M}_{dw,x} \coloneqq \operatorname{F}_{dw,x} \cdot \operatorname{arm}_{dw,y} = -0.254 \, \mathrm{ft} \cdot \mathrm{kip}$ 

Moment due to Tailwater

Field: Tailwater

#### C. Silt and Soil horizontal loading on upstream side of dam:

| Earth Pressure Coefficients,<br>At Rest Condition | $K_{\text{Ofill}} \coloneqq 1 - \sin(\phi_{\text{fill}}) = 0.38$ |
|---------------------------------------------------|------------------------------------------------------------------|
|                                                   | $K_{\text{Osilt}} \coloneqq 1 - \sin(\phi_s) = 0.50$             |

Loads due to upstream fill (polygon area)

Horizontal Force

$$F_{\text{fill.x}} \coloneqq \frac{1}{2} \left[ K_{\text{Ofill}} \cdot \left( \gamma_{\text{fillus}} - \gamma_{\text{w}} \right) \right] \cdot \left( EL_{\text{F2}} - EL_{\text{b}} \right)^2 \cdot LF = 0.052 \text{ kip}$$

 $F_{\text{fill}.x2a} \coloneqq 0$ 

Moment arm of fill

$$\operatorname{arm}_{\text{fill.y}} := \frac{1}{3} (EL_{F2} - EL_b) = 0.667 \, \text{ft}$$

 $\operatorname{arm}_{\operatorname{fill}.y2a} \coloneqq 0$ 

Moment due to fill

$$M_{fill.x} := F_{fill.x} \cdot arm_{fill.y} = 0.035 \, ft \cdot kip$$

$$M_{\text{fill},x2a} := F_{\text{fill},x2a} \cdot \operatorname{arm}_{\text{fill},y2a} = 0$$

 $EL_{F1} = 575.9 \, ft$ 

 $EL_{F2} = 575 \, ft$ 

**D. Soil horizontal loading on downstream side of dam:** Loads due to lower downstream fill (triangular area)

Horizontal Force $F_{ds_fill.x3} \coloneqq \frac{-1}{2} K_{0fill} \cdot (\gamma_{fillds} - \gamma_w) \cdot (EL_{F1} - EL_b)^2 \cdot LF = -0.109 \, kip$ Moment arm of fill $arm_{ds_fill.y3} \coloneqq \frac{1}{3} (EL_{F1} - EL_b) = 0.967 \, ft$ Moment due to fill $M_{ds_fill.x3} \coloneqq F_{ds_fill.x3} \cdot arm_{ds_fill.y3} = -0.106 \, ft \cdot kip$ N/A Field: SiltN/A Fields DownstreamSoilN/A Fields Upstream Soil $arm_{ds_fill.x3} = F_{ds_fill.x3} \cdot arm_{ds_fill.y3} = -0.106 \, ft \cdot kip$ 

(Summary of Vertical Forces Raw Data - Click to expand)



 JOB:
 05.0046161.07
 Mirror Lake Dam

 SHEET NO.:
 10
 OF
 34

 CALCULATED BY:
 EK
 DATE:
 4/1/2021

 CHECKED BY:
 JGD
 DATE:
 4/1/2021

## III. SUMMARY OF INITIAL LOADS AND MOMENTS - CASE #1

#### SUMMARY OF VERTICAL FORCES/MOMENTS

|                              | Acting      |          | Resisting       |             | ng       |                 |
|------------------------------|-------------|----------|-----------------|-------------|----------|-----------------|
| Component                    | Force (kip) | Arm (ft) | Moment (kip-ft) | Force (kip) | Arm (ft) | Moment (kip-ft) |
| Weight of Dam, Area #1       | -           | -        | -               | -33.6       | -1.0     | 33.6            |
| Weight of Dam, Area #2       | -           | -        | -               | -3.2        | 8.0      | -25.2           |
| Weight of Dam, Area #3       | -           | -        | -               | 0.0         | 0.0      | 0.0             |
| Weight of Dam, Area #4       | -           | -        | -               | 0.0         | 0.0      | 0.0             |
| Headwater over Dam, Fuwa.y   | -           | -        | -               | 0.0         | -9.0     | 0.0             |
| Headwater over Dam, Fuwb.y   | -           | -        | -               | 0.0         | 0.0      | 0.0             |
| Headwater over Dam, Fuwc.y   | -           | -        | -               | 0.0         | 0.0      | 0.0             |
| Tailwater over Dam, Fdw.y    | -           | -        | -               | 0.0         | -9.0     | 0.0             |
| Fill weight on heel, Ffill.y | -           | -        | -               | 0.0         | -9.0     | 0.0             |
| Silt weight on heel, Fsilt.y | -           | -        | -               | 0.0         | -9.0     | 0.0             |
| Fill weight on toe, Area 1A  | -           | -        | -               | 0.0         | 9.0      | 0.0             |
| Fill weight on heel, Area 2a | -           | -        | -               | 0.0         | 9.0      | 0.0             |
| Uplift Pressure, Area #1     | 3.3         | 0.0      | 0.0             | -           | -        | -               |
| Uplift Pressure, Area #2     | 4.3         | 3.0      | 12.8            | -           | -        | -               |
| Uplift Pressure, Area #3     | 0.0         | 9.0      | 0.0             | -           | -        | -               |
| Uplift Pressure, Area #4     | 0.0         | 9.0      | 0.0             | -           | -        | -               |
| Totals                       | 7.5         | -        | 12.8            | -36.8       | -        | 8.4             |

#### $\Sigma$ Vertical Forces w/ uplift

$$FV_{tot} := (F_{vr} + F_{va}) \cdot kips$$

Σ Vertical Moments w/ uplift

$$MV_{tot} := (M_{vr} + M_{va}) \cdot kips \cdot ft$$

 $FV_{tot} = -29.225 \cdot kips$  $MV_{tot} = 21.2 \cdot kips \cdot ft$ 

(Summary of Horizontal Forces Raw Data - Click to expand)

#### SUMMARY OF HORIZONTAL FORCES/MOMENTS

|                                    | Acting      |          |                 |             | Resistir | ng              |
|------------------------------------|-------------|----------|-----------------|-------------|----------|-----------------|
| Component                          | Force (kip) | Arm (ft) | Moment (kip-ft) | Force (kip) | Arm (ft) | Moment (kip-ft) |
| Headwater on Dam, Fuwa.x           | 0.0         | 0.0      | 0.0             | -           | -        | -               |
| Headwater on Dam, Fuwb.x           | 3.4         | 3.5      | 12.0            | -           | -        | -               |
| Saturated Silt, Fsilt.x            | 0.0         | 0.0      | 0.0             | -           | -        | -               |
| Unsaturated Fill, Ffill.x2a        | 0.0         | 0.0      | 0.0             | -           | -        | -               |
| Saturated Fill, Ffill.x            | 0.1         | 0.7      | 0.0             | -           | -        | -               |
| Tailwater on Dam, Fdw.x            | -           | -        | -               | -0.3        | 1.0      | -0.3            |
| Upper Downstream Fill, Fds_fill.x1 | -           | -        | -               | 0.0         | 0.0      | 0.0             |
| Upper Downstream Fill, Fds_fill.x2 | -           | -        | -               | 0.0         | 0.0      | 0.0             |
| Lower Downstream Fill, Fds_fill.x3 | -           | -        | -               | -0.1        | 1.0      | -0.1            |
| Totals                             | 3.5         | -        | 12.1            | -0.4        | -        | -0.4            |

 $\boldsymbol{\Sigma}$  Horizontal Forces

 $FH_{tot} := (F_{hr} + F_{ha}) \cdot kips$ 

 $MH_{tot} := (M_{hr} + M_{ha}) \cdot kips \cdot ft$ 

 $\boldsymbol{\Sigma}$  Horizontal Moments

 $\Sigma$  Moments (w/ uplift)

 $\mathbf{M}_{tot} \coloneqq \left(\mathbf{M}_{ha} + \mathbf{M}_{hr} + \mathbf{M}_{va} + \mathbf{M}_{vr}\right) \cdot \mathbf{kips} \cdot \mathbf{ft} = 32.919 \, \mathrm{ft} \cdot \mathrm{kip}$ 

 $FH_{tot} = 3.12 \cdot kips$ 

 $MH_{tot} = 11.7 \cdot kips \cdot ft$ 



| JOB:          | 05.0046161.07 | Mirror L | ake Dam  |
|---------------|---------------|----------|----------|
| SHEET NO.:    | <u>11</u>     | OF       | 34       |
| CALCULATED BY | : <u>EK</u>   | DATE:    | 4/1/2021 |
| CHECKED BY:   | JGD           | DATE:    | 4/1/2021 |

**CBA**<sub>1</sub> = "NOT REQUIRED"

(+) = D/S of Centroid

(-) = U/S of Centroid

## IV. EVALUATE OVERTURNING AND BASE PRESSURES

- Check Resultant Location - COE EM1110-2-2200 Overturning Stability Criteria

#### - Usual Conditions = Within middle third of the base

- Unusual Conditions = Within middle half of the base
- Extreme Conditions = Within base

#### A. Calculate Eccentricity and Base Pressures

- Resultant and Eccentricity

- Eccentricity (from centroid of Base Area)

$$e_{0} := \frac{M_{tot}}{-FV_{tot}} = 1.126 \, \text{ft}$$

- Resultant Location (from toe)

$$R_0 := \frac{1}{2}B - e_0 = 7.874 \, \text{ft}$$

**Location**<sub>Ro<sub>1</sub></sub> := "WITHIN MIDDLE 1/3" if 
$$\left(R_0 \ge \frac{B}{3}\right) \land \left(R_0 \le \frac{2B}{3}\right)$$
  
"OUTSIDE MIDDLE 1/3" otherwise

Engineers and Scientists

#### - Base Pressures (includes Uplift)

| Base Pressure at Heel: | $P_{us_o} := \frac{-FV_{tot}}{B \cdot LF} \cdot \left(1 - \frac{6 \cdot e_o}{B}\right) = 1.014  \text{ksf}$ | (-) = tension<br>(+) = compression |
|------------------------|-------------------------------------------------------------------------------------------------------------|------------------------------------|
| Base Pressure at Toe:  | $P_{ds_o} := \frac{-FV_{tot}}{B \cdot LF} \cdot \left(1 + \frac{6 \cdot e_o}{B}\right) = 2.233  \text{ksf}$ | (-) = tension<br>(+) = compression |

#### C. Check if Cracked Base Analysis (CBA) is Required

(CBA is required when base pressure with uplift are negative, i.e. base in tension)

**CBA**<sub>1</sub> := 
$$|| \text{REQUIRED}||$$
 if  $(P_{us_o} < 0) \lor (P_{ds_o} < 0)$ 

"NOT REQUIRED" otherwise

(Note: if CBA not needed, do not edit Cracked Base Analysis Region

Cracked Base Analysis - Case #1 (Click to Expand, if Required)

Revised Parameters (Click to Expand)

Evaluate Sliding Stability (shear friction factor):

Base Inclination Angle  $\beta$ 

Base Area for Analysis

$$\beta = 0$$
$$A_0 := B_{unc} \cdot LF = 18 \text{ ft}^2$$

With no cohesion



END OF LOAD CASE #1 ANALYSIS





|        | JOB:      | 05.0046161.07 | Mirror Lak | ke Dam    |
|--------|-----------|---------------|------------|-----------|
| SHEET  | NO.:      | 14            | OF         | 34        |
| CALCU  | LATED BY: | EK            | DATE:      | 4/1/2021  |
| CHECKE | DBY       | JGD           |            | 4/1/2021  |
| 0      |           | 000           |            | 1/ 1/2021 |

#### $\boldsymbol{\Sigma}$ Moments from the vertical component of Headwater on U/S face of the Dam

 $M_{uwa.y} \coloneqq M_{uwa.y} + M_{uwb.y} + M_{uwc.y} = -1.997 \cdot kip \cdot ft$ 

 $H_{dg} := EL_{dg} - EL_{b} = 0 \text{ ft}$ 

Field: Tailwater

D. Soil and Silt Loads: (Vertical Components) - Same as Load Case #1

E. Uplift Pressure:

Height of drainage gallery to plane of analysis

Effective Hydraulic Head at Drainage Gallery, H<sub>dr</sub>

Head at heel
$$\mathcal{H}_{hboek} := H_{uw_2} = 16 \text{ ft}$$
Head at toe $\mathcal{H}_{hboek} := H_{dw_2} = 8.2 \text{ ft}$ Uplift Pressure at Heel $\mathcal{H}_{uup_{\Delta}dsx} := H_{uw_2} \cdot \gamma_w = 0.998 \cdot \text{ksf}$ Uplift Pressure at Toe $\mathcal{H}_{uup_{\Delta}dsx} := H_{toe} \cdot \gamma_w = 0.512 \cdot \text{ksf}$ Uplift Pressure below Drainage Gallery $\mathcal{H}_{uup_{\Delta}dsy} := H_{dr} \cdot \gamma_w = 0.998 \cdot \text{ksf}$ Uplift forces below dam base:  
Refer to FBD for notation: $\mathcal{U}_{uup_{\Delta}dsy} := H_{dr} \cdot \gamma_w = 0.998 \cdot \text{ksf}$ Uplift forces below dam base:  
Refer to FBD for notation: $\mathcal{U}_{uup_{\Delta}dsy} := H_{dr} \cdot \gamma_w = 0.998 \cdot \text{ksf}$  $\mathcal{U}_{uup_{\Delta}ds} := u_{up_{\Delta}ds} \cdot (B - d_{dr}) \cdot LF = 9.21 \cdot \text{kip}$  $\mathcal{U}_{uup_{\Delta}ds} := \frac{1}{2}(u_{up_{\Delta}ds} - u_{up_{\Delta}ds}) \cdot (B - d_{dr}) \cdot LF = 4.38 \cdot \text{kip}$  $\mathcal{U}_{uup_{\Delta}ds} := u_{up_{\Delta}ds} \cdot d_{dr} \cdot LF = 0 \cdot \text{kip}$  $\mathcal{U}_{udv} := \frac{1}{2}(u_{up_{u}us} - u_{up_{\Delta}ds}) \cdot d_{dr} \cdot LF = 0 \cdot \text{kip}$  $\mathcal{U}_{uup_{\Delta}ds} := u_{up_{\Delta}ds} \cdot d_{up_{\Delta}ds} \cdot u_{up_{\Delta}ds} \cdot u_{up_{\Delta}d$ 



| JOB:          | 05.0046161.07 | Mirror La | ike Dam  |
|---------------|---------------|-----------|----------|
| SHEET NO .:   | <u>15</u>     | _ OF      | 34       |
| CALCULATED BY | : <u>EK</u>   | _DATE:    | 4/1/2021 |
| CHECKED BY:   | JGD           | _ DATE: _ | 4/1/2021 |

Moment arms of Uplift Forces - Same as Load Case #1

Moments due to Uplift Components

$$\begin{split} \underbrace{M_{upl}}_{:} &= U_1 \cdot d_{up1} = 0 \cdot kip \cdot ft \\ \underbrace{M_{up2}}_{:} &= U_2 \cdot d_{up2} = 13.141 \cdot kip \cdot ft \\ \underbrace{M_{up2}}_{:} &= U_3 \cdot d_{up3} = 0 \\ \underbrace{M_{up4}}_{:} &= U_4 \cdot d_{up4} = 0 \\ \underbrace{M_{up4}}_{:} &= M_{up1} + M_{up2} + M_{up3} + M_{up4} = 13.141 \cdot kip \cdot ft \end{split}$$

Engineers and Scientists

 $\Sigma$  Uplift Moments =

## **II. INITIAL HORIZONTAL FORCES AND MOMENTS:**

A. Headwater: (Horizontal Component)

Horizontal Component of  
Headwater on Dam
$$\begin{aligned}
\mathcal{F}_{\text{Hadwater on Dam}} &:= \left| \frac{1}{2} \gamma_{\text{W}} \cdot \text{H}_{\text{dam}}^2 \cdot \text{LF} \text{ if } \text{H}_{\text{ov}} (\text{H}_{\text{water_over_crest}}) > 0 = 6.115 \cdot \text{kips} \\
& \frac{1}{2} \gamma_{\text{W}} \cdot (\text{H}_{\text{uw}_2})^2 \cdot \text{LF} \text{ otherwise} \\
\end{aligned}$$

$$\begin{aligned}
\mathcal{F}_{\text{Hawater over_crest}} &:= \left| \gamma_{\text{W}} \cdot (\text{H}_{\text{uw}_2} - \text{H}_{\text{dam}}) \cdot (\text{H}_{\text{dam}}) \cdot \text{LF} \text{ if } \text{H}_{\text{ov}} (\text{H}_{\text{water_over_crest}}) > 0 = 1.747 \cdot \text{kips} \\
& 0 \text{ otherwise} \end{aligned}$$

 $\Sigma$  Horizontal Forces by Headwater

 $F_{uwa.x} = F_{uwa.x} + F_{uwb.x} = 7.862 \text{ kip}$ 

Moment arms of  
Headwater on Dam 
$$\underset{l}{\operatorname{arm}}_{\operatorname{Aux}} := \begin{bmatrix} \frac{1}{3} H_{dam} & \text{if } H_{ov} (H_{water\_over\_crest}) > 0 = 4.667 \cdot \text{ft} \\ \frac{1}{3} H_{uw_2} & \text{otherwise} \end{bmatrix}$$

$$\underset{\text{arm}}{\text{arm}} := \begin{cases} \frac{H_{dam}}{2} & \text{if } H_{ov}(H_{water\_over\_crest}) > 0 = 7 \cdot \text{ft} \\ 0 & \text{otherwise} \end{cases}$$

Moment of Headwater on Dam  $M_{uwa.x} := F_{uwa.x} \cdot arm_{uwa.y} = 28.538 \cdot kip \cdot ft$ 

 $M_{uwb.x} = F_{uwb.x} \cdot arm_{uwb.y} = 12.23 \cdot kip \cdot ft$ 

 $\boldsymbol{\Sigma}$  Moments due to Headwater

 $M_{uwa.x} = M_{uwa.x} + M_{uwb.x} = 40.768 \cdot kip \cdot ft$ 



| Engineers and |  |
|---------------|--|
| Scientists    |  |

| JOB:          | 05.0046161.07 | Mirror La | ke Dam   |
|---------------|---------------|-----------|----------|
| SHEET NO.:    | 16            | OF        | 34       |
| CALCULATED BY | : <u> </u>    | DATE:     | 4/1/2021 |
| CHECKED BY:   | JGD           | DATE:     | 4/1/2021 |

Field: Tailwater

| <u>B.</u> | Tailwater: | (Horizontal | Component) |
|-----------|------------|-------------|------------|
|-----------|------------|-------------|------------|

Horizontal Force due to Tailwater

 $F_{\text{durate}} = \frac{-1}{2} \frac{2}{3} \cdot \gamma_{\text{w}} \cdot \left(H_{\text{dw}_2}\right)^2 \cdot LF = -1.399 \text{ kip}$ 

Moment arm of Tailwater

 $\lim_{d \to \infty} H_{dw_2} = 2.733 \, \text{ft}$ 

Moment due to Tailwater

 $\underset{w}{\text{M}}_{dw,x} := F_{dw,x} \cdot \operatorname{arm}_{dw,y} = -3.823 \, \text{ft} \cdot \text{kip}$ 

Field: Tailwater

#### C. Soil horizontal loading on upstream side of dam: Same as Load Case #1

D. Soil horizontal loading on downstream side of dam: - Same as Load Case #1



**GZA GeoEnvironmental, Inc.** 249 Vanderbilt Ave Norwood, MA 02062 781-278-3700 FAX 781-278-5701 JOB: <u>05.0046161.07 Mirror Lake Dam</u> SHEET NO.: <u>17</u> OF <u>34</u> CALCULATED BY: <u>EK</u> DATE: <u>4/1/2021</u>

(Summary of Vertical Forces Raw Data - Click to expand)

http://www.gza.com

# III. SUMMARY OF INITIAL LOADS AND MOMENTS - CASE #2

## SUMMARY OF VERTICAL FORCES/MOMENTS

|                              | Acting      |          | Resisting       |             | ng       |                 |
|------------------------------|-------------|----------|-----------------|-------------|----------|-----------------|
| Component                    | Force (kip) | Arm (ft) | Moment (kip-ft) | Force (kip) | Arm (ft) | Moment (kip-ft) |
| Weight of Dam, Area #1       | -           | -        | -               | -33.6       | -1.0     | 33.6            |
| Weight of Dam, Area #2       | -           | -        | -               | -3.2        | 8.0      | -25.2           |
| Weight of Dam, Area #3       | -           | -        | -               | 0.0         | 0.0      | 0.0             |
| Weight of Dam, Area #4       | -           | -        | -               | 0.0         | 0.0      | 0.0             |
| Headwater over Dam, Fuwa.y   | -           | -        | -               | 0.0         | -9.0     | 0.0             |
| Headwater over Dam, Fuwb.y   | -           | -        | -               | 0.0         | -9.0     | 0.0             |
| Headwater over Dam, Fuwc.y   | -           | -        | -               | -2.0        | 1.0      | -2.0            |
| Tailwater over Dam, Fdw.y    | -           | -        | -               | 0.0         | -9.0     | 0.0             |
| Fill weight on heel, Ffill.y | -           | -        | -               | 0.0         | -9.0     | 0.0             |
| Silt weight on heel, Fsilt.y | -           | -        | -               | 0.0         | -9.0     | 0.0             |
| Fill weight on toe, Area 1A  | -           | -        | -               | 0.0         | 9.0      | 0.0             |
| Fill weight on heel, Area 2a | -           | -        | -               | 0.0         | 9.0      | 0.0             |
| Uplift Pressure, Area #1     | 9.2         | 0.0      | 0.0             | -           | -        | -               |
| Uplift Pressure, Area #2     | 4.4         | 3.0      | 13.1            | -           | -        | -               |
| Uplift Pressure, Area #3     | 0.0         | 9.0      | 0.0             | -           | -        | -               |
| Uplift Pressure, Area #4     | 0.0         | 9.0      | 0.0             | -           | -        | -               |
| Totals                       | 13.6        | -        | 13.1            | -38.7       | -        | 6.4             |

 $\Sigma$  Vertical Forces w/ uplift

 $FV_{\text{total}} := (F_{\text{vr}} + F_{\text{va}}) \cdot \text{kips}$ 

 $FV_{tot} = -25.156 \cdot kips$  $MV_{tot} = 19.5 \cdot kips \cdot ft$ 

 $\Sigma$  Vertical Moments w/ uplift

 $\underbrace{MV}_{\text{trot}} := \left( M_{vr} + M_{va} \right) \cdot kips \cdot ft$ 

(Summary of Horizontal Forces Raw Data - Click to expand)

## SUMMARY OF HORIZONTAL FORCES/MOMENTS

|                                    | Acting      |          |                 |             | Resistir | ng              |
|------------------------------------|-------------|----------|-----------------|-------------|----------|-----------------|
| Component                          | Force (kip) | Arm (ft) | Moment (kip-ft) | Force (kip) | Arm (ft) | Moment (kip-ft) |
| Headwater on Dam, Fuwa.x           | 6.1         | 4.7      | 28.5            | -           | -        | -               |
| Headwater on Dam, Fuwb.x           | 1.7         | 7.0      | 12.2            | -           | -        | -               |
| Saturated Silt, Fsilt.x            | 0.0         | 0.0      | 0.0             | -           | -        | -               |
| Saturated Fill, Ffill.x2a          | 0.0         | 0.0      | 0.0             | -           | -        | -               |
| Saturated Fill, Ffill.x            | 0.1         | 0.7      | 0.0             | -           | -        | -               |
| Tailwater on Dam, Fdw.x            | -           | -        | -               | -1.4        | 2.7      | -3.8            |
| Upper Downstream Fill, Fds_fill.x1 | -           | -        | -               | 0.0         | 0.0      | 0.0             |
| Upper Downstream Fill, Fds_fill.x2 | -           | -        | -               | 0.0         | 0.0      | 0.0             |
| Lower Downstream Fill, Fds_fill.x3 | -           | -        | -               | -0.1        | 1.0      | -0.1            |
| Totals                             | 7.9         | -        | 40.8            | -1.5        | -        | -3.9            |

 $\boldsymbol{\Sigma}$  Horizontal Forces

 $\underset{\text{maximum}}{\text{FH}} = (F_{hr} + F_{ha}) \cdot kips$ 

 $MH_{hr} = (M_{hr} + M_{ha}) \cdot kips \cdot ft$ 

 $\Sigma$  Moments (w/ uplift)

**Σ** Horizontal Moments

 $M_{\text{total}} = \left(M_{ha} + M_{hr} + M_{va} + M_{vr}\right) \cdot \text{kips} \cdot \text{ft}$ 

 $FH_{tot} = 6.407 \cdot kips$  $MH_{tot} = 36.9 \cdot kips \cdot ft$ 

 $M_{tot} = 56.4 \cdot kips \cdot ft$ 



| JOB:          | 05.0046161.   | 07 Mirror La | ake Dam_ |
|---------------|---------------|--------------|----------|
| SHEET NO.:    | 18            | OF           | 34       |
| CALCULATED    | BY: <u>EK</u> | DATE:        | 4/1/202  |
| CHECKED BY: _ | JGD           | DATE:        | 4/1/202  |

## IV. EVALUATE OVERTURNING AND BASE PRESSURES

- Check Resultant Location - COE EM1110-2-2200 Overturning Stability Criteria

- Usual Conditions = Within middle third of the base
- Unusual Conditions = Within middle half of the base
- Extreme Conditions = Within base

#### A. Calculate Eccentricity and Base Pressures

- Resultant and Eccentricity

- Eccentricity (from centroid of Base Area)

$$e_{\text{WW}} = \frac{M_{\text{tot}}}{-FV_{\text{tot}}} = 2.243 \,\text{ft}$$

. .

- Resultant Location (from toe)

$$R_{WW} = \frac{1}{2}B - e_0 = 6.757 \, \text{ft}$$

**Location**<sub>Ro<sub>2</sub></sub> := "WITHIN MIDDLE HALF" if 
$$\left(R_0 \ge \frac{B}{4}\right) \land \left(R_0 \le \frac{3B}{4}\right)$$
 **Location**<sub>Ro<sub>2</sub></sub> = "WITHIN MIDDLE HALF" "OUTSIDE MIDDLE HALF" otherwise

Engineers and Scientists

- Base Pressures (includes Uplift) Base Pressure at Heel:

$$P_{\text{MUSMOV}} = \frac{-FV_{\text{tot}}}{B \cdot LF} \cdot \left(1 - \frac{6 \cdot e_0}{B}\right) = 0.353 \, \text{ksf}$$

Base Pressure at Toe:

 $\underset{\text{MMSMOV}}{P} = \frac{-FV_{tot}}{B \cdot LF} \cdot \left(1 + \frac{6 \cdot e_0}{B}\right) = 2.442 \, \text{ksf}$ 

(-) = tension

(+) = compression

(-) = tension

(+) = compression

**CBA**<sub>2</sub> = "NOT REQUIRED"

#### C. Check if Cracked Base Analysis (CBA) is Required

(CBA is required when base pressure with uplift are negative, i.e. base in tension)

**CBA**<sub>2</sub> := 
$$|$$
 "REQUIRED" if  $(P_{us_o} < 0) \lor (P_{ds_o} < 0)$   
"NOT REQUIRED" otherwise

(+) = D/S of Centroid (-) = U/S of Centroid

(Note: if CBA not needed, skip cracked base analysis section and move on to Factor of Safety calculation)

Cracked Base Analysis - Case #2 (Click to Expand, if Required)

Revised Parameters (Click to Expand)

Evaluate Sliding Stability (shear friction factor):

Base Inclination Angle $\beta = 0$ Base Area for Analysis $A_{aa} := B_{unc} \cdot LF = 18 \text{ ft}^2$ 

With no cohesion

$$FS\_SLIDING_2 \coloneqq \frac{\left(-F_V \cdot \cos(\beta) - F_U + F_H \cdot \sin(\beta) \cdot f_\beta\right) \cdot \tan(\phi_{dam}) + \left(A_0 - A_{shear}\right) \cdot c_0 + A_{shear} \cdot c_{shear}}{F_H \cdot \cos(\beta) - F_V \cdot \sin(\beta) \cdot f_\beta} = 2.177$$



END OF LOAD CASE #2 ANALYSIS

|                                                | GZA                                                         | Engineers and                          | !                                       | JOB:                          | 05.0046161.                       | 07 Mirror L | ake Dam  |
|------------------------------------------------|-------------------------------------------------------------|----------------------------------------|-----------------------------------------|-------------------------------|-----------------------------------|-------------|----------|
|                                                | <b>GeoEnvironmental, In</b>                                 | C. Scientists                          |                                         | SHEET NO .:                   | 20                                | OF          | 34       |
| <b>57</b> \ ))                                 | Norwood, MA 02062                                           |                                        |                                         | CALCULATED BY:                | : <u>EK</u>                       | DATE:       | 4/1/2021 |
|                                                | 781-278-3700<br>FAX 781-278-5701<br>http://www.gza.com      |                                        |                                         | CHECKED BY:                   | JGD                               | DATE:       | 4/1/2021 |
|                                                | LO                                                          | AD CASE #3 - Norm                      | nal Pool +                              | lce                           |                                   |             |          |
| I. INITIAL VER                                 | TICAL LOADS AND                                             | MOMENTS:                               |                                         |                               |                                   |             |          |
| <u>A. Dam self-weig</u>                        | <mark>hts</mark> - (Same as Load Cas                        | <u>e #1)</u>                           |                                         |                               |                                   |             |          |
| $\Sigma$ Weights of Dar                        | n                                                           | W <sub>dam</sub> :                     | = −36.75·kips                           |                               |                                   |             |          |
| $\Sigma$ Dam Weight M                          | oments about centerline                                     | of Dam M <sub>dam</sub> =              | = 8.4·kips·ft                           |                               |                                   |             |          |
| B. Headwater: (                                | Vertical Component)                                         |                                        |                                         |                               |                                   |             |          |
| Conditional staten<br>( <i>determines whet</i> | nent using variable H_wate<br>her headwater higher thar     | er_over_crest<br>n <i>dam crest)</i>   | H.<br>Minister <u>v</u> ø               | weinerentin = Huw             | <sub>3</sub> – H <sub>dam</sub> = | = -3.5  ft  |          |
| Height of wa                                   | ater above crest                                            | Hwater_over_crest)                     | := H <sub>water_ove</sub><br>0 otherwis | er_crest if H <sub>wate</sub> | er_over_cr                        | est > 0.ft  |          |
|                                                |                                                             |                                        | H <sub>ov</sub> (H <sub>wa</sub>        | ter over crest) =             | 0 ft                              |             |          |
| Headwater weigh                                | t on dam (if crest not overt<br>d to various areas of water | copped, areas of a, b, and $c = 0$     |                                         |                               |                                   |             |          |
| Headwater                                      | Area A                                                      | $F := -\gamma \cdot Area \cdot LF = 0$ | 0                                       |                               |                                   |             |          |
|                                                | ,<br>,                                                      | $F_{1} := 0 kip$                       |                                         |                               |                                   |             |          |
| Headwater                                      | Area B                                                      | WWWDAYA. ONP                           |                                         |                               |                                   |             |          |
| Headwater                                      | Area C                                                      | Further Okip                           |                                         |                               |                                   |             |          |
| $\Sigma$ Vertical compo                        | onents of Headwater over                                    | r the Upstream face of the Dam         | 1                                       |                               |                                   |             |          |
|                                                |                                                             | $F_{uwa.y} = F_{uwa.y} + F_{uwb}$      | $y + F_{uwc.y} = 0$                     |                               |                                   |             |          |
| Moment arms of a                               | a, b & c about the Center o                                 | f Base (same as Load Case #1)          |                                         |                               |                                   |             |          |
| Moments of vertic                              | al headwater forces a, b &                                  | c forces about centerline:             |                                         |                               |                                   |             |          |
| Headwater                                      | Area A                                                      | Muuvayn = Fuwa.y armuv                 | $wa.x = 0 \cdot kip \cdot ft$           |                               |                                   |             |          |
| Headwater                                      | Area B                                                      | Muundaya = Fuwb.y armus                | $wb.x = 0 \cdot kip \cdot ft$           |                               |                                   |             |          |
| Headwater                                      | Area C                                                      | Muwayn = Fuwc.y armuv                  | $wc.x = 0 \cdot kip \cdot ft$           |                               |                                   |             |          |
| $\Sigma$ Moments from                          | the vertical component of                                   | of Headwater on U/S face of the        | Dam                                     |                               |                                   |             |          |
|                                                |                                                             | $M_{uwa.y} = M_{uwa.y} + M_{uva.y}$    | wb.y + M <sub>uwc.y</sub>               | $= 0 \cdot kip \cdot ft$      |                                   |             |          |
| Field: Tailwater                               |                                                             |                                        |                                         |                               |                                   |             |          |



Engineers and Scientists

| SHEET NO.:21 OF34                 |  |
|-----------------------------------|--|
| CALCULATED BY: EK DATE: 4/1/2021_ |  |
| CHECKED BY: JGD DATE: 4/1/2021    |  |

D. Soil and Silt Loads: (Vertical Components) - Same as Load Case #1

#### E. Uplift Pressure:

Height of drainage gallery to plane of analysis

Effective Hydraulic Head at Drainage Gallery, H<sub>dr</sub>

 $H_{dg} := EL_{dg} - EL_{b} = 0 \text{ ft}$ 

| H. | $\left(1 - E_{dr}\right) \cdot \left[\left(H_{uw_3} - H_{dw_3}\right) \frac{B - d_{dr}}{B} + H_{dw_3} - H_{dg}\right] + H_{dg} \text{ if } H_{dg} \ge H_{dg}$ | $H_{dw_3} = 10.5 \cdot ft$   |                 |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-----------------|
|    | $(1 - E_{dr}) \cdot (H_{uw_3} - H_{dw_3}) \cdot \frac{B - d_{dr}}{B} + H_{dw_3}$ otherwise                                                                    | based on drain effectiveness | $E_{dr} = 0.\%$ |

 $H_{\text{theel}} := H_{\text{uW}_2} = 10.5 \text{ ft}$ 

 $H_{dw_3} = H_{dw_3} = 2.9 \, \text{ft}$ 

 $u_{uw_3} \cdot \gamma_w = 0.655 \cdot ksf$ 

 $u_{\text{top}} = H_{\text{toe}} \cdot \gamma_{\text{W}} = 0.181 \cdot \text{ksf}$ 

 $u_{\rm W} = H_{\rm dr} \cdot \gamma_{\rm W} = 0.655 \cdot \rm ksf$ 

Head at toe

Uplift Pressure at Heel

Head at heel

Uplift Pressure at Toe

Uplift Pressure below Drainage Gallery

Uplift forces below dam base: Refer to FBD for notation:

 $\Sigma$  Uplift Forces =

 $U_{up} = u_{up} ds (B - d_{dr}) LF = 3.257 kip$  $\underset{\text{W2}}{\text{W2}} = \frac{1}{2} \left( u_{\text{up}} - dg - u_{\text{up}} - ds \right) \cdot \left( B - d_{\text{dr}} \right) \cdot LF = 4.268 \cdot kip$  $U_{3v} = u_{up} dg \cdot d_{dr} \cdot LF = 0 \cdot kip$  $U_{AV} := \frac{1}{2} \left( u_{up\_us} - u_{up\_dg} \right) \cdot d_{dr} \cdot LF = 0 \cdot kip$ 

# $U_1 := U_1 + U_2 + U_3 + U_4 = 7.525 \cdot kip$

Moment arms of Uplift Forces - Same as Load Case #1

Moments due to Uplift Components

 $M_{up1} = U_1 \cdot d_{up1} = 0 \cdot kip \cdot ft$  $M_{up2} := U_2 \cdot d_{up2} = 12.804 \cdot kip \cdot ft$  $M_{up3} := U_3 \cdot d_{up3} = 0$  $M_{up4} := U_4 \cdot d_{up4} = 0$ 

 $M_{up} := M_{up1} + M_{up2} + M_{up3} + M_{up4} = 12.804 \cdot kip \cdot ft$ 



| JOB:         | 05.0046161.0 | 7 Mirror La | ake Dam   |
|--------------|--------------|-------------|-----------|
| SHEET NO.:   | 22           | OF          | 34        |
| CALCULATED B |              | DATE:       | 4/1/2021  |
| CHECKED BY:  | JGD          | DATE:       | 4/1/2021  |
|              | 000          |             | 1/ 1/2021 |

## II. INITIAL HORIZONTAL FORCES AND MOMENTS:

A. Headwater: (Horizontal Component)

| Horizontal Component of<br>Headwater on Dam | $F_{\text{MUMMANNAL}} = \left[ \gamma_{\text{W}} \cdot \left( H_{\text{uw}_{3}} - H_{\text{dam}} \right) \cdot H_{\text{dam}} \cdot LF \text{ if } H_{\text{ov}} \left( H_{\text{water\_over\_crest}} \right) > 0 = 0 \cdot \text{kips} \right]$ |
|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                             | 0 otherwise                                                                                                                                                                                                                                      |
|                                             | $F_{\text{maxwbax}} := \left  \frac{1}{2} \gamma_{\text{W}} \cdot \text{H}_{\text{dam}}^2 \cdot \text{LF} \text{ if } \text{H}_{\text{ov}} \left( \text{H}_{\text{water\_over\_crest}} \right) > 0 = 3.44 \cdot \text{kips} \right  $            |
|                                             | $\left[\frac{1}{2}\gamma_{\rm W} \left({\rm H}_{\rm uw_3}\right)^{-1} LF \text{ otherwise}\right]$                                                                                                                                               |
| $\Sigma$ Horizontal Forces by Headw         | $F_{uwa.x} = F_{uwb.x} = 3.44 \text{ kip}$                                                                                                                                                                                                       |
| Moment arms of<br>Headwater on Dam          | $\underset{\text{arm}_{\text{wave}}}{\text{arm}_{\text{wave}}} := \left  \frac{H_{\text{dam}}}{2}  \text{if } H_{\text{ov}} \left( H_{\text{water}_{\text{over}_{\text{crest}}}} \right) > 0 = 0 \cdot \text{ft} \right $                        |
|                                             | 0 otherwise                                                                                                                                                                                                                                      |
|                                             | $\underset{\text{armuwbay}}{\text{arm}} = \frac{1}{3} H_{\text{dam}} \text{ if } H_{\text{ov}}(H_{\text{water\_over\_crest}}) > 0 = 3.5 \cdot \text{ft}$                                                                                         |
|                                             | $\frac{1}{3}$ H <sub>uw<sub>3</sub></sub> otherwise                                                                                                                                                                                              |
| Moment of Headwater on<br>Dam               | $M_{uwa.x} := F_{uwa.x} \cdot arm_{uwa.y} = 0 \cdot kip \cdot ft$                                                                                                                                                                                |
|                                             | $M_{uwb.x} = F_{uwb.x} \cdot arm_{uwb.y} = 12.039 \cdot kip \cdot ft$                                                                                                                                                                            |
| $\Sigma$ Moments due to Headwater           | $M_{\text{unv}, x} := M_{\text{unv}, x} + M_{\text{unv}, b} = 12.039 \cdot \text{kip} \cdot \text{ft}$                                                                                                                                           |
| Field: Tailwater                            | www.x uwb.x ·                                                                                                                                                                                                                                    |
| B. Tailwater: (Horizontal Comp              | ponent)                                                                                                                                                                                                                                          |
| Horizontal Force due to<br>Tailwater        | $F_{dum} = \frac{-1}{2} \gamma_{w} \cdot \left(H_{dw_{3}}\right)^{2} \cdot LF = -0.262 \text{ kip}$                                                                                                                                              |
| Moment arm of Tailwater                     | $\operatorname{arm}_{dwwyv} := \frac{1}{3} \operatorname{H}_{dw_3} = 0.967  \mathrm{ft}$                                                                                                                                                         |
| Moment due to Tailwater                     | $M_{dw.x} := F_{dw.x} \cdot arm_{dw.y} = -0.254 \text{ ft} \cdot \text{kip}$                                                                                                                                                                     |
| Field: Tailwater                            |                                                                                                                                                                                                                                                  |
| C. Silt and Soil horizontal load            | ing on upstream side of dam: - Same as Load Case #1                                                                                                                                                                                              |
| D. Soil horizontal loading on de            | ownstream side of dam: - Same as Load Case #1                                                                                                                                                                                                    |
| E. Ice Loading                              |                                                                                                                                                                                                                                                  |
| Horizontal Ice Force                        | $F_{ice.x} := H_{ice} \cdot (f_{ice}) \cdot LF = 5 kip$                                                                                                                                                                                          |
| Moment Arm of Ice Force                     | $\operatorname{arm}_{ice.y} := \left( H_{uw_3} - 0.5 \cdot H_{ice} \right) = 10  \text{ft}$                                                                                                                                                      |
| Moment due to Ice Force                     | $M_{ice.x} := F_{ice.x} \cdot arm_{ice.y} = 50  ft \cdot kip$                                                                                                                                                                                    |



**GZA GeoEnvironmental, Inc.** 249 Vanderbilt Ave Norwood, MA 02062 781-278-3700 FAX 781-278-5701 
 JOB:
 05.0046161.07
 Mirror Lake Dam

 SHEET NO.:
 23
 OF
 34

 CALCULATED BY:
 EK
 DATE:
 4/1/2021

 CHECKED BY:
 JGD
 DATE:
 4/1/2021

(Summary of Vertical Forces Raw Data - Click to expand)

http://www.gza.com

## III. SUMMARY OF INITIAL LOADS AND MOMENTS - CASE #3

## SUMMARY OF VERTICAL FORCES/MOMENTS

|                              | Acting      |          | Resisting       |             |          |                 |
|------------------------------|-------------|----------|-----------------|-------------|----------|-----------------|
| Component                    | Force (kip) | Arm (ft) | Moment (kip-ft) | Force (kip) | Arm (ft) | Moment (kip-ft) |
| Weight of Dam, Area #1       | -           | -        | -               | -33.6       | -1.0     | 33.6            |
| Weight of Dam, Area #2       | -           | -        | -               | -3.2        | 8.0      | -25.2           |
| Weight of Dam, Area #3       | -           | -        | -               | 0.0         | 0.0      | 0.0             |
| Weight of Dam, Area #4       | -           | -        | -               | 0.0         | 0.0      | 0.0             |
| Headwater over Dam, Fuwa.y   | -           | -        | -               | 0.0         | -9.0     | 0.0             |
| Headwater over Dam, Fuwb.y   | -           | -        | -               | 0.0         | -9.0     | 0.0             |
| Headwater over Dam, Fuwc.y   | -           | -        | -               | 0.0         | 1.0      | 0.0             |
| Tailwater over Dam, Fdw.y    | -           | -        | -               | 0.0         | -9.0     | 0.0             |
| Fill weight on heel, Ffill.y | -           | -        | -               | 0.0         | -9.0     | 0.0             |
| Silt weight on heel, Fsilt.y | -           | -        | -               | 0.0         | -9.0     | 0.0             |
| Fill weight on toe, Area 1A  | -           | -        | -               | 0.0         | 9.0      | 0.0             |
| Fill weight on toe, Area 1B  | -           | -        | -               | 0.0         | 9.0      | 0.0             |
| Uplift Pressure, Area #1     | 3.3         | 0.0      | 0.0             | -           | -        | -               |
| Uplift Pressure, Area #2     | 4.3         | 3.0      | 12.8            | -           | -        | -               |
| Uplift Pressure, Area #3     | 0.0         | 9.0      | 0.0             | -           | -        | -               |
| Uplift Pressure, Area #4     | 0.0         | 9.0      | 0.0             | -           | -        | -               |
| Totals                       | 7.5         | -        | 12.8            | -36.8       | -        | 8.4             |

#### $\Sigma$ Vertical Forces w/ uplift

 $FV_{\text{total}} = (F_{\text{vr}} + F_{\text{va}}) \cdot \text{kips} = -29.225 \text{ kip}$ 

#### $\Sigma$ Vertical Moments w/ uplift

 $MV_{\text{test}} := (M_{\text{vr}} + M_{\text{va}}) \cdot \text{kips} \cdot \text{ft} = 21.204 \text{ ft} \cdot \text{kip}$ 

(Summary of Horizontal Forces Raw Data - Click to expand)

#### SUMMARY OF HORIZONTAL FORCES/MOMENTS

|                                    | Acting      |          |                 |             | Resistir | ng              |
|------------------------------------|-------------|----------|-----------------|-------------|----------|-----------------|
| Component                          | Force (kip) | Arm (ft) | Moment (kip-ft) | Force (kip) | Arm (ft) | Moment (kip-ft) |
| Headwater on Dam, Fuwa.x           | 0.0         | 0.0      | 0.0             | -           | -        | -               |
| Headwater on Dam, Fuwb.x           | 3.4         | 3.5      | 12.0            | -           | -        | -               |
| Saturated Silt, Fsilt.x            | 0.0         | 0.0      | 0.0             | -           | -        | -               |
| Unsaturated Fill, Ffill.x2a        | 0.0         | 0.0      | 0.0             | -           | -        | -               |
| Saturated Fill, Ffill.x            | 0.1         | 0.7      | 0.0             | -           | -        | -               |
| Ice on Dam, Fice.x                 | 5.0         | 10.0     | 50.0            | -           | -        | -               |
| Tailwater on Dam, Fdw.x            | -           | -        | -               | -0.3        | 1.0      | -0.3            |
| Upper Downstream Fill, Fds_fill.x1 | -           | -        | -               | 0.0         | 0.0      | 0.0             |
| Upper Downstream Fill, Fds_fill.x2 | -           | -        | -               | 0.0         | 0.0      | 0.0             |
| Lower Downstream Fill, Fds_fill.x3 | -           | -        | -               | -0.1        | 1.0      | -0.1            |
| Totals                             | 8.5         | -        | 62.1            | -0.4        | -        | -0.4            |

 $\boldsymbol{\Sigma}$  Horizontal Forces

 $\boldsymbol{\Sigma}$  Horizontal Moments

 $\Sigma$  Moments (w/ uplift)

 $\begin{array}{l} \underset{M}{\text{FH}_{\text{total}}}{\overset{\text{:=}}{=}} \left( F_{hr} + F_{ha} \right) \cdot \text{kips} = 8.12 \, \text{kip} \\ \\ \underset{M}{\text{MH}_{\text{total}}}{\overset{\text{:=}}{=}} \left( M_{hr} + M_{ha} \right) \cdot \text{kips} \cdot \text{ft} = 61.715 \, \text{ft} \cdot \text{kip} \\ \\ \\ \underset{M}{\text{M}_{\text{total}}}{\overset{\text{:=}}{=}} \left( M_{ha} + M_{hr} + M_{va} + M_{vr} \right) \cdot \text{kips} \cdot \text{ft} = 82.919 \, \text{ft} \cdot \text{kip} \end{array}$ 



| gineers | and |
|---------|-----|
| ntists  |     |

(+) = D/S of Centroid

(-) = U/S of Centroid

En Scie

| JOB:         | 05.0046161. | 07 Mirror La | ke Dam   |
|--------------|-------------|--------------|----------|
| SHEET NO.:   | 24          | OF           | 34       |
| CALCULATED B | Y: <u> </u> | DATE: _      | 4/1/2021 |
| CHECKED BY:  | JGD         | DATE:        | 4/1/2021 |

**CBA**<sub>3</sub> = "NOT REQUIRED"

## IV. EVALUATE OVERTURNING AND BASE PRESSURES

- Check Resultant Location - COE EM1110-2-2200 Overturning Stability Criteria

#### - Usual Conditions = Within middle third of the base

- Unusual Conditions = Within middle half of the base
- Extreme Conditions = Within base

#### A. Calculate Eccentricity and Base Pressures

- Resultant and Eccentricity

- Eccentricity (from centroid of Base Area)

$$e_{\text{NOV}} := \frac{M_{\text{tot}}}{-FV_{\text{tot}}} = 2.837 \,\text{ft}$$

- Resultant Location (from toe)

$$R_{WW} = \frac{1}{2}B - e_0 = 6.163 \,\text{ft}$$

#### - Evaluate Overturning using Resultant Location

.

**Location**<sub>Ro<sub>3</sub></sub> := "WITHIN MIDDLE 1/3" if 
$$\left(R_0 \ge \frac{B}{3}\right) \land \left(R_0 \le \frac{2B}{3}\right)$$
  
"OUTSIDE MIDDLE 1/3" otherwise

#### - Base Pressures (includes Uplift)

| Base Pressure at Heel: | $\mathbf{P}_{\text{MMSMOV}} = \frac{-FV_{\text{tot}}}{B \cdot LF} \cdot \left(1 - \frac{6 \cdot e_{\text{o}}}{B}\right) = 0.088  \text{ksf}$ | (-) = tension<br>(+) = compression |
|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| Base Pressure at Toe:  | $\underline{P}_{\text{MMSMOV}} := \frac{-FV_{\text{tot}}}{B \cdot LF} \cdot \left(1 + \frac{6 \cdot e_0}{B}\right) = 3.159 \text{ksf}$       | (-) = tension<br>(+) = compression |

 $\beta = 0$ 

 $A_{\text{OV}} = B_{\text{unc}} \cdot LF = 18 \text{ ft}^2$ 

#### C. Check if Cracked Base Analysis (CBA) is Required

(CBA is required when base pressure with uplift are negative, i.e. base in tension)

**CBA**<sub>3</sub> := 
$$|$$
"REQUIRED" if  $(P_{us_o} < 0) \lor (P_{ds_o} < 0)$   
"NOT REQUIRED" otherwise

(Note: if CBA not needed, do not edit Cracked Base Analysis Region

Cracked Base Analysis - Case #3 (Click to Expand, if Required)

Revised Parameters (Click to Expand)

#### Evaluate Sliding Stability (shear friction factor):

Base Inclination Angle

Base Area for Analysis





| JOB:          | 05.0046161.07 | Mirror La | ake Dam  |
|---------------|---------------|-----------|----------|
| SHEET NO.:    | 26            | OF        | 34       |
| CALCULATED BY | /: <u>EK</u>  | DATE:     | 4/1/2021 |
| CHECKED BY:   | JGD           | DATE:     | 4/1/2021 |

# LOAD CASE #4 - Normal Pool + Earthquake I. INITIAL VERTICAL LOADS AND MOMENTS: A. Dam self-weights - (Same as Load Case #1) $W_{dam} = -36.75 \cdot kips$ Σ Weights of Dam Σ Dam Weight Moments about centerline of Dam $M_{dam} = 8.4 \cdot kips \cdot ft$ B. Headwater: (Vertical Component), Same as Load Case #1 C. Tailwater: (Vertical Component) Same as Load Case #1 D. Soil and Silt Loads: (Vertical Components) - Same as Load Case #1 E. Uplift Pressure: Same as Load Case #1 II. INITIAL HORIZONTAL FORCES AND MOMENTS: A. Headwater: (Horizontal Component) - Same as Load Case #1 Field: Tailwater **B. Tailwater:** (Horizontal Component) (Typically neglect stabilizing force from tailwater during seismic event, unless additional capacity is needed) TW := 0 $F_{dw.x} := \begin{bmatrix} -\frac{1}{2} \gamma_{w} \cdot (H_{dw_1})^2 \cdot LF & \text{if } TW = 1 \\ 0 & \text{otherwise} \end{bmatrix} = 0 \cdot \text{kips}$ Horizontal Force due to Tailwater $arm_{dw_3} = \frac{1}{3} H_{dw_3} = 0.967 \, \text{ft}$ Moment arm of Tailwater $M_{dwww} := F_{dw.x} \cdot arm_{dw.y} = 0 \text{ ft} \cdot kip$ Moment due to Tailwater Field: Tailwater C. Silt and Soil horizontal loading on upstream side of dam: - Same as Load Case #1 **D. Earthquake Loading** 1. Add'I Horizontal Forces and Moments for Concrete due to Earthquake:

Additional horizontal forces:  $F_{W1q.x} \coloneqq -\lambda \cdot W_1 = 4.334 \, \text{kip}$   $F_{W2q.x} \coloneqq -\lambda \cdot W_2 = 0.406 \, \text{kip}$   $F_{W3q.x} \coloneqq -\lambda \cdot W_3 = 0$ 



|                                                       | $F_{W4q.x} := -\lambda \cdot W_4 = 0$                                                                                                                                                             |  |  |  |  |  |  |
|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| $\Sigma$ Additional Concrete Forces Due to Earthquake |                                                                                                                                                                                                   |  |  |  |  |  |  |
|                                                       | $F_{damq.x} := F_{W1q.x} + F_{W2q.x} + F_{W3q.x} + F_{W4q.x} = 4.741 \text{ kip}$                                                                                                                 |  |  |  |  |  |  |
| Moment arms about Toe:                                | $\operatorname{arm}_{W1q.y} := Y_{Centroid.W1} = 7 \text{ ft}$                                                                                                                                    |  |  |  |  |  |  |
|                                                       | $\operatorname{arm}_{W2q.y} := Y_{Centroid.W2} = 5.25  \text{ft}$                                                                                                                                 |  |  |  |  |  |  |
|                                                       | $\operatorname{arm}_{W3q.y} := 0 \operatorname{ft}$                                                                                                                                               |  |  |  |  |  |  |
|                                                       | $\operatorname{arm}_{W4q.y} := 0$ ft                                                                                                                                                              |  |  |  |  |  |  |
| Additional moments:                                   | $\mathbf{M}_{\mathbf{W}1\mathbf{q}.\mathbf{x}} := \mathbf{F}_{\mathbf{W}1\mathbf{q}.\mathbf{x}} \cdot \operatorname{arm}_{\mathbf{W}1\mathbf{q}.\mathbf{y}} = 30.341  \text{ft} \cdot \text{kip}$ |  |  |  |  |  |  |
|                                                       | $M_{W2q.x} := F_{W2q.x} \cdot \operatorname{arm}_{W2q.y} = 2.133  \text{ft-kip}$                                                                                                                  |  |  |  |  |  |  |
|                                                       | $M_{W3q.x} := F_{W3q.x} \cdot \operatorname{arm}_{W3q.y} = 0$                                                                                                                                     |  |  |  |  |  |  |

Engineers and Scientists

 $\Sigma$  Additional Concrete Moments Due to Earthquake

Active seismic soil pressure coefficient (fill):

$$M_{damq.x} := M_{W1q.x} + M_{W2q.x} + M_{W3q.x} + M_{W4q.x} = 32.474 \, \text{ft} \cdot \text{kip}$$

#### 2. Additional Horizontal Forces and Moments from Soil due to Earthquake:

Earthquake Forces from Upstream and Downstream Soil (See Appendix G of EM 1110-2-2100)

Peak Ground Acceleration:  $PGA := \lambda = 0.129$  g

- Assume  $k_v := 0$  ind neglect effect of soil friction on dam. Vertical face, therefore use EQ G-5 and G-6

 $M_{W4q,x} := F_{W4q,x} \cdot arm_{W4q,y} = 0$ 

Upstream (active) Embankment<br/>Angle: $\beta_{us} := 0$  $\beta_{us} = 0.^{\circ}$ Passive Side Embankment Angle: $\beta_{ds} := 0$  $\beta_{ds} = 0.^{\circ}$ Seismic Inertia Angle: $\psi := atan \left( \frac{\frac{2}{3} PGA}{1-k_v} \right) = 0.086$  $\psi = 4.915.^{\circ}$ 

$$K_{AE\_fill} \coloneqq \frac{\cos(\varphi_{fill} - \psi)^2}{\cos(\psi)^2 \cdot \left(1 + \sqrt{\frac{\sin(\varphi_{fill})\sin(\varphi_{fill} - \psi - \beta_{us})}{\cos(\beta_{us}) \cdot \cos(\psi)}}\right)^2} = 0.283$$



**GZA GeoEnvironmental, Inc.** 249 Vanderbilt Ave Norwood, MA 02062 781-278-3700 FAX 781-278-5701

http://www.gza.com

| JOB:          | 05.0046161.07 | Mirror La | ake Dam  |
|---------------|---------------|-----------|----------|
| SHEET NO.:    | 28            | OF        | 34       |
| CALCULATED BY | : <u>EK</u>   | DATE:     | 4/1/2021 |
| CHECKED BY:   | JGD           | DATE:     | 4/1/2021 |

Active seismic sol  
pressure coefficient (silt):  

$$K_{AE, silt} = \frac{\cos(\phi_{k} - \psi)^{2}}{\cos(\psi)^{2} \left(1 + \sqrt{\frac{\sin(\phi_{k})\sin(\phi_{k} - \psi - \beta_{WS})}{\cos(\phi_{W})}\right)^{2}} = 0.387$$
Passive seismic sol  
pressure coefficient (silt):  
Analyses of previous load cases conservatively used Kyrather  
than Ky. Since Kye<sub>E</sub> >> Ky, assume seismic force will negate  
any stabilizing force of the downstream sol.  
Earthquake Horizontal Forces from Sol upstream (refer to FBD for dam geometry)  
- Seismic loading due to fill (triangular area)  
Horizontal Force  
Fritilq.x :=  $\frac{1}{2} K_{AE, fill} (\gamma_{fitilus} - \gamma_{W}) (EL_{F2} - EL_{b})^{2} \cdot LF = 0.038 kip$   
Moment arm  
 $m_{fillq,y} := \frac{1}{3} (EL_{F2} - EL_{b}) = 0.667 \text{ ft}$   
Moment due to fill  
Moment due to fill  
M<sub>fillq,x</sub> :=  $F_{fillq,x} \cdot arm_{fillq,y} = 0.026 \text{ ft} \cdot kip$   
Figure #10 of USBR Engineering Monograph #11  
 $C_{c} := 0.73$  for dam with vertical upstream face/slope  
The increase in water pressure due to horizontal earthquake acceleration becomes:  
 $P_{c} := C_{c} \cdot PGA \gamma_{W} ((EL_{uw_{4}} - EL_{b}) = 61.7 \cdot psf$   
The total horizontal force due to  $P_{a}$  is expressed analytically as:  
 $F_{uwq,x} := 0.726 P_{c} ((EL_{uw_{4}} - EL_{b}) - LF = 0.47 \cdot kip$   
The total horizontal formed ue to  $P_{a}$  is expressed analytically as:  
 $M_{uwq,x} := 0.299 P_{c} ((EL_{uw_{4}} - EL_{b}) - LF = 0.034 \text{ ft} kip$   
(Summary of Vertical Forces Raw Data - Click to expand)



GZA GeoEnvironmental, Inc. 249 Vanderbilt Ave Norwood, MA 02062 781-278-3700 FAX 781-278-5701

http://www.gza.com

JOB: 05.0046161.07 Mirror Lake Dam\_ SHEET NO.: \_\_\_\_\_ 29\_\_\_\_\_ OF \_\_\_\_ 34\_\_\_ CALCULATED BY: \_\_\_\_\_EK\_\_\_\_ DATE: \_\_\_4/1/2021\_ CHECKED BY: \_\_\_\_\_\_JGD\_\_\_\_\_ DATE: \_\_\_\_\_4/1/2021\_\_\_

**III. SUMMARY OF INITIAL LOADS AND MOMENTS - CASE #4** 

#### SUMMARY OF VERTICAL FORCES/MOMENTS

|                              | Acting      |          | Resisting       |             |          |                 |
|------------------------------|-------------|----------|-----------------|-------------|----------|-----------------|
| Component                    | Force (kip) | Arm (ft) | Moment (kip-ft) | Force (kip) | Arm (ft) | Moment (kip-ft) |
| Weight of Dam, Area #1       | -           | -        | -               | -33.6       | -1.0     | 33.6            |
| Weight of Dam, Area #2       | -           | -        | -               | -3.2        | 8.0      | -25.2           |
| Weight of Dam, Area #3       | -           | -        | -               | 0.0         | 0.0      | 0.0             |
| Weight of Dam, Area #4       | -           | -        | -               | 0.0         | 0.0      | 0.0             |
| Headwater over Dam, Fuwa.y   | -           | -        | -               | 0.0         | -9.0     | 0.0             |
| Headwater over Dam, Fuwb.y   | -           | -        | -               | 0.0         | -9.0     | 0.0             |
| Headwater over Dam, Fuwc.y   | -           | -        | -               | 0.0         | 1.0      | 0.0             |
| Tailwater over Dam, Fdw.y    | -           | -        | -               | 0.0         | -9.0     | 0.0             |
| Fill weight on heel, Ffill.y | -           | -        | -               | 0.0         | -9.0     | 0.0             |
| Silt weight on heel, Fsilt.y | -           | -        | -               | 0.0         | -9.0     | 0.0             |
| Fill weight on toe, Area 1A  | -           | -        | -               | 0.0         | 9.0      | 0.0             |
| Fill weight on heel, Area 2a | -           | -        | -               | 0.0         | 9.0      | 0.0             |
| Uplift Pressure, Area #1     | 3.3         | 0.0      | 0.0             | -           | -        | -               |
| Uplift Pressure, Area #2     | 4.3         | 3.0      | 12.8            | -           | -        | -               |
| Uplift Pressure, Area #3     | 0.0         | 9.0      | 0.0             | -           | -        | -               |
| Uplift Pressure, Area #4     | 0.0         | 9.0      | 0.0             | -           | -        | -               |
| Totals                       | 7.5         | -        | 12.8            | -36.8       | -        | 8.4             |

 $\Sigma$  Vertical Forces w/ uplift

 $FV_{\text{tot}} := (F_{\text{vr}} + F_{\text{va}}) \cdot \text{kips}$ 

 $FV_{tot} = -29.225 \cdot kips$ 

 $MV_{tot} = 21.2 \cdot kips \cdot ft$ 

## Σ Vertical Moments w/ uplift

 $\underbrace{MV}_{\text{WV}} := \left( M_{vr} + M_{va} \right) \cdot kips \cdot ft$ 

(Summary of Horizontal Forces Raw Data - Click to expand)

#### SUMMARY OF HORIZONTAL FORCES/MOMENTS

|                                  | Acting      |          |                 |             | Resistir | ng              |
|----------------------------------|-------------|----------|-----------------|-------------|----------|-----------------|
| Component                        | Force (kip) | Arm (ft) | Moment (kip-ft) | Force (kip) | Arm (ft) | Moment (kip-ft) |
| Headwater over Dam, Fuwa.x       | 0.0         | 0.0      | 0.0             | -           | -        | -               |
| Headwater over Dam, Fuwb.x       | 3.4         | 3.5      | 12.0            | -           | -        | -               |
| Saturated Silt, Fsilt.x          | 0.0         | 0.0      | 0.0             | -           | -        | -               |
| Unsaturated Fill, Ffill.x2a      | 0.0         | 0.0      | 0.0             | -           | -        | -               |
| Saturated Fill, Ffill.x          | 0.1         | 0.7      | 0.0             | -           | -        | -               |
| Seismic Force, Dam (Total)       | 4.7         | 7.0      | 32.5            | -           | -        | -               |
| Seismic Force, Silt, Fsiltq.x    | 0.0         | 0.0      | 0.0             | -           | -        | -               |
| Seismic Force, Silt, Fsilt1q.x   | 0.0         | 0.0      | 0.0             | -           | -        | -               |
| Seismic Force, Fill, Ffillq.x    | 0.0         | 0.7      | 0.0             | -           | -        | -               |
| Seismic Force, Headwater, Fuwq.x | 0.5         |          | 2.0             | -           | -        | -               |
| Tailwater over Dam, Fdw.x        | -           | -        | -               | 0.0         | 14.0     | 0.0             |
| Seismic Tailwater, Fdwq.x        | -           | -        | -               | 0.0         | 1.0      | 0.0             |
| Total Downstream Earth Loads     | -           | -        | -               | 0.0         | 1.2      | 0.0             |
| Totals                           | 8.7         | -        | 46.6            | 0.0         | 0.0      | 0.0             |

**Σ Horizontal Forces** 

**Σ** Horizontal Moments

Σ Moments (w/ uplift)

 $\underset{\text{maximum}}{\text{FH}} = (F_{hr} + F_{ha}) \cdot kips$ 

 $MH_{het} = (M_{hr} + M_{ha}) \cdot kips \cdot ft$ 

FH<sub>tot</sub> = 8.741⋅kips  $MH_{tot} = 46.6 \cdot kips \cdot ft$  $\overline{M_{tot}} = 67.8 \cdot kips \cdot ft$  $\underbrace{\mathbf{M}_{ha}}_{\text{Motorform}} = \left(\mathbf{M}_{ha} + \mathbf{M}_{hr} + \mathbf{M}_{va} + \mathbf{M}_{vr}\right) \cdot \mathbf{kips} \cdot \mathbf{ft}$ 



| JOB:         | 05.0046161.  | 07 Mirror La | ake Dam  |
|--------------|--------------|--------------|----------|
| SHEET NO.:   | 30           | OF           | 34       |
| CALCULATED E | BY: <u> </u> | DATE:        | 4/1/2021 |
| CHECKED BY:  | JGD          | DATE:        | 4/1/2021 |

## IV. EVALUATE OVERTURNING AND BASE PRESSURES

- Check Resultant Location - COE EM1110-2-2200 Overturning Stability Criteria

- Usual Conditions = Within middle third of the base
- Unusual Conditions = Within middle half of the base
- Extreme Conditions = Within base

#### A. Calculate Eccentricity and Base Pressures

#### - Resultant and Eccentricity

- Eccentricity (from centroid of Base Area)

$$\underset{\text{MOV}}{\text{e}} \coloneqq \frac{M_{\text{tot}}}{-\text{FV}_{\text{tot}}} = 2.32 \,\text{ft}$$

- Resultant Location (from toe)

$$R_{\text{NMOV}} = \frac{1}{2}B - e_0 = 6.68 \,\text{ft}$$

#### - Evaluate Overturning using Resultant Location

**Location**<sub>R0<sub>4</sub></sub> := "WITHIN BASE" if 
$$(R_0 \ge 0) \land (R_0 \le B)$$
  
"OUTSIDE BASE" otherwise

#### - Base Pressures (includes Uplift)

Base Pressure at Heel:

$$P_{\text{NUSSMON}} = \frac{-FV_{\text{tot}}}{B \cdot LF} \cdot \left(1 - \frac{6 \cdot e_0}{B}\right) = 0.368 \, \text{ksf}$$

 $\underline{P}_{\text{tot}} = \frac{-FV_{\text{tot}}}{B \cdot LF} \cdot \left(1 + \frac{6 \cdot e_0}{B}\right) = 2.879 \,\text{ksf}$ 

(-) = tension(+) = compression

(+) = D/S of Centroid

(-) = U/S of Centroid

Base Pressure at Toe:

## C. Check if Cracked Base Analysis (CBA) is Required

(CBA is required when base pressure with uplift are negative, i.e. base in tension)

(Note: CBA not required for seismic, unless a crack exists under normal conditions)

$$CBA_4 := CBA_1 = "NOT REQUIRED"$$

Cracked Base Analysis - Case #4 (Click to Expand, if Required)



END OF LOAD CASE #4 ANALYSIS



Engineers and Scientists

| JOB:           | 05.0046161.07 | Mirror La | ke Dam   |
|----------------|---------------|-----------|----------|
| SHEET NO.:     | 32            | OF        | 34       |
| CALCULATED BY: | EK            | DATE:     | 4/1/2021 |
| CHECKED BY:    | JGD           | DATE:     | 4/1/2021 |

# SUMMARY OF STABILITY ANALYSIS RESULTS - SPILLWAY SECTION (PROPOSED)

|      | Sliding                     |                       |                         |                      |                                     |                                             |                         |                                    |  |
|------|-----------------------------|-----------------------|-------------------------|----------------------|-------------------------------------|---------------------------------------------|-------------------------|------------------------------------|--|
|      | Case                        | Descr                 | iption                  | Cr                   | acked Base<br>Analysis              | Minimum<br>Required FS                      | Calculated FS           |                                    |  |
|      | 1                           | Normal wa             | al water levels         |                      | T REQUIRED                          | 2.0                                         | 5.2                     |                                    |  |
|      | 2                           | Flood wa              | ter levels              | NO                   | T REQUIRED                          | 1.7                                         | 2.2                     |                                    |  |
|      | 3                           | Normal wa<br>+ I      | ater levels<br>ce       | NO                   | T REQUIRED                          | 2.0                                         | 2.0                     |                                    |  |
|      | 4                           | Normal wa<br>+ Earth  | ater levels<br>nquake   | NO                   | T REQUIRED                          | 1.3                                         | 1.9                     |                                    |  |
|      |                             |                       |                         |                      | Overturnin                          | α                                           |                         |                                    |  |
| Case | se Description Resu<br>Loca |                       | Requi<br>Resul<br>Locat | ired<br>tant<br>tion | Calculated<br>Resultant<br>Location | Calculated<br>Base Pressure<br>at Toe (ksf) | Bearing<br>Capacity OK? | Dam<br>Compressive<br>Strength OK? |  |
| 1    | Normal w                    | ater levels           | WITHIN M<br>1/3         | AIDDLE<br>3          | ОК                                  | 2.2                                         | ОК                      | ОК                                 |  |
| 2    | Flood wa                    | iter levels           | WITHIN BASE             |                      | ОК                                  | 2.4                                         | ОК                      | ОК                                 |  |
| 3    | Normal w                    | ater levels<br>Ice    | WITHIN MIDDLE<br>1/3    |                      | ОК                                  | 3.2                                         | ОК                      | ОК                                 |  |
| 4    | Normal w<br>+ Eart          | ater levels<br>hquake | WITHIN                  | BASE                 | ОК                                  | 2.9                                         | ОК                      | ОК                                 |  |
|      |                             |                       |                         |                      | Eletation                           |                                             |                         |                                    |  |
|      | Case                        | e Description N       |                         | Minimu               | um Required FS                      | Calculated FS                               | FS Flotation<br>OK?     |                                    |  |
|      | 1                           | Normal wa             | ater levels             |                      | 1.3                                 | 4.9                                         | ОК                      |                                    |  |
|      | 2 Flood water levels        |                       | 1.1                     |                      | 2.9                                 | ОК                                          |                         |                                    |  |
|      | 3                           | Normal wa<br>+ I      | ater levels<br>ce       |                      | 1.3                                 | 4.9                                         | ОК                      |                                    |  |
|      | 4                           | Normal wa<br>+ Earth  | ater levels<br>nquake   |                      | 1.1                                 | 4.9                                         | ОК                      |                                    |  |



GZA GeoEnvironmental, Inc. 249 Vanderbilt Ave

Norwood, MA 02062 781-278-3700 FAX 781-278-5701 http://www.gza.com

| Engineers and |  |
|---------------|--|
| Scientists    |  |

| JOB:         | 05.0046161.07 | Mirror L | ake Dam  |
|--------------|---------------|----------|----------|
| SHEET NO.:   | 33            | _ OF     | 34       |
| CALCULATED I | BY: <u>EK</u> | _DATE:   | 4/1/2021 |
| CHECKED BY:  | JGD           | DATE:    | 4/1/2021 |
| _            |               | _        |          |

qult = γsubDNq + 0.5γsubBNγ = (130-62.4)(2)(61.55) +0.5(130-62.4)(12)(78.61) = 40,206 psf qall = qult/FS = 40,206/3 = 13,402 psf = 13.4 ksf



**GZA GeoEnvironmental, Inc.** 249 Vanderbilt Ave

Norwood, MA 02062 781-278-3700 FAX 781-278-5701 http://www.gza.com

| Engineers and |  |
|---------------|--|
| Scientists    |  |

| JOB:          | 05.0046161.07 | Mirror La | ike Dam  |
|---------------|---------------|-----------|----------|
| SHEET NO.:    | 34            | OF        | 34       |
| CALCULATED BY | :EK           | DATE:     | 4/1/2021 |
| CHECKED BY:   | JGD           | DATE:     | 4/1/2021 |
|               |               | -         |          |

 $FS\_SLIDING_3 := round(FS\_SLIDING_3, 1)$ 



**APPENDIX J – PROPOSED CONDITIONS PLANS** 





## GENERAL NOTES

1. VERTICAL ELEVATIONS ARE IN REFERENCE TO NORTH AMERICAN VERTICAL DATUM OF 1988 (NAVD88).

# TOE DRAIN CONSISTS OF:

- 6-INCH DIAMETER PERFORATED PVC PIPE

- DISCHARGE TO DOWNSTREAM CHANNEL.
- CLEANOUT AT EACH END OF DRAIN
- BACKFILL CONSIST OF 3/8-INCH CRUSHED STONE
- WRAP STONE IN MIRAFI 1100N GEOTEXTILE FABRIC

STANDARD RIPRAP CONSISTS OF: CONNDOT FORM 818, M.12.02.1

NEW FILL:

CONNDOT FORM 818, M.02.01 GRANULAR FILL WITH MODIFIED NO. 100 BETWEEN 0 AND 15 PERCENT AND MODIFIED NO. 200 BETWEEN 0 AND 12 PERCENT

PROOF COMPACTED EMBANKMENT FILL MINIMUM OF 6 PASSES OF A VIBRATORY DRUM ROLLER WITH A MINIMUM DYNAMIC FORCE OF 5,000 LBS PER FOOT OF DRUM WIDTH

| NO.                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   | ISSUE/DESC   | RIPTION |                           |                                             | BY                      | DATE                       |                                                                                                        |
|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--------------|---------|---------------------------|---------------------------------------------|-------------------------|----------------------------|--------------------------------------------------------------------------------------------------------|
| UNLESS S<br>GEOENVIRC<br>CLIENT OR<br>THE DRAWI<br>USE AT AN<br>TRANSFER,<br>EXPRESS ( | UNLESS SPECIFICALLY STATED BY WRITTEN AGREEMENT, THIS DRAWING IS THE SOLE PROPERTY OF GZZ<br>GEONNIRONNENTAL, INC. (GZA). THE INFORMATION SHOWN ON THE DRAWING IS SOLELY FOR USE BY GZA'S<br>CULENT OR THE CLENT'S DESIGNATED REPRESENTATIVE FOR THE SPECIFIC PROJECT AND LOCATION IDENTIFIED ON<br>THE DRAWING. THE DRAWING SHALL NOT BE TRANSFERRED, REUSED, COPIED, OR ALTERED IN ANY MANNER FOR<br>USE AT ANY OTHER LOCATION OR FOR ANY OTHER PURPOSE WITHOUT THE PRIOR WRITTEN CONSENT OF GZA. ANY<br>TRANSFER, REUSE, OR MODIFICATION TO THE DRAWING BY THE CLEATT OR OTHERS, WITHOUT THE PRIOR WRITTEN<br>EXPRESS CONSENT OF GZA, WILL BE AT THE USER'S SOLE RISK AND WITHOUT ANY RISK OR LIABILITY TO GZA |   |              |         |                           |                                             |                         |                            | RTY OF GZA<br>SE BY GZA'S<br>DENTIFIED ON<br>MANNER FOR<br>OF GZA. ANY<br>RIOR WRITTEN<br>LITY TO GZA. |
|                                                                                        | MIRROR LAKE DAM<br>STORRS, CONNECTICUT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |              |         |                           |                                             |                         |                            |                                                                                                        |
|                                                                                        | PROPOSED SECTIONS<br>SPILLWAY AND EMBANKMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |              |         |                           |                                             |                         |                            |                                                                                                        |
| PREPARED BY:<br>GZA GeoEnvironmental, Inc.<br>Engineers and Scientists<br>www.gza.com  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |              |         | PREPARE<br>B\<br>20<br>BL | D FOR:<br>/H INTEGR<br>6 WEST N<br>OOMFIELD | ATED<br>EWBEF<br>D, CON | SERVIC<br>RRY RO<br>NECTIC | ES<br>AD<br>CUT                                                                                        |
| PROJ MGR                                                                               | R: JFC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ) | REVIEWED BY: | DMB     | CHECKED                   | BY: DML                                     |                         |                            |                                                                                                        |
| DESIGNED                                                                               | BY: JFC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   | DRAWN BY:    | JFD     | SCALE:                    | AS NOTED                                    | ים ה                    | wG                         |                                                                                                        |
| DATE:                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   | PROJECT NO   | ).      | REVISIO                   | N NO.                                       | 1                       | 2                          |                                                                                                        |
| MARCH, 2021 05.0046161.07                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |              |         |                           |                                             | SHE                     | ET NO.                     | 2 OF 3                                                                                                 |



|              | ww   | w.gza.com    | BLOOI | MFIELD,     | CONNECTIC | UI        |        |
|--------------|------|--------------|-------|-------------|-----------|-----------|--------|
| PROJ MGR:    | JFD  | REVIEWED BY: | DMB   | CHECKED BY: | DML       |           |        |
| DESIGNED BY: | JFD  | DRAWN BY:    | JFD   | SCALE: AS   | NOTED     | DvvG      |        |
| DATE:        |      | PROJECT NO.  |       | REVISION N  | 0.        | 3         |        |
| MARCH, 2     | 2021 | 05.00461     | 61.07 |             |           | SHEET NO. | 3 OF 3 |



**APPENDIX K – INUNDATION MAP- MIRROR LAKE DAM** 

| GURLEYVILLE ROAD                     | - CULVERT 2  |                     |
|--------------------------------------|--------------|---------------------|
|                                      | 500-yr Flood | 500-yr Flood Breach |
| Maximum Water Surface Elevation (ft) | 474.0        | 476.3               |
| Top of Structure (ft)                | 476.9        | 476.9               |
| Overtopping Depth (ft)               | -2.9         | -0.6                |
| Peak Discharge (cfs)                 | 205          | 485                 |

|   |                                      | A State      |                     |  |  |  |  |  |  |
|---|--------------------------------------|--------------|---------------------|--|--|--|--|--|--|
| Ş | GURLEYVILLE ROAD - CULVERT 3         |              |                     |  |  |  |  |  |  |
| È |                                      | 500-yr Flood | 500-yr Flood Breach |  |  |  |  |  |  |
|   | Maximum Water Surface Elevation (ft) | 386.8        | 389.2               |  |  |  |  |  |  |
| ۲ | Top of Structure (ft)                | 387.5        | 387.5               |  |  |  |  |  |  |
|   | Overtopping Depth (ft)               | -0.7         | 1.7                 |  |  |  |  |  |  |
|   | Peak Discharge (cfs)                 | 210          | 400                 |  |  |  |  |  |  |

| PRIVATE DRIVE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CULVERT           |                           |                                                |                                                           |                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------------------|------------------------------------------------|-----------------------------------------------------------|------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 500-yr Flood      | 500-yr Flood Breach       |                                                |                                                           |                              |
| Maximum Water Surface Elevation (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 315.2             | 317.3                     | NORIE                                          |                                                           |                              |
| Top of Structure (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 317.0             | 317.0                     | 0                                              | 500                                                       | 1,000                        |
| Overtopping Depth (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -1.8              | 0.3                       |                                                |                                                           | Feet                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 155               | 2/0                       |                                                |                                                           |                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                           | Legend                                         |                                                           |                              |
| A HILL AND AND AND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A DATE DA         |                           |                                                |                                                           |                              |
| A STATE AND A STATE OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |                           | 500                                            | -Year Flood (no Breac                                     | h)                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                           | coo                                            | Veen Fleed with Dem                                       | Draak                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A DE              |                           | 500                                            | -Year Flood with Dam                                      | Breach                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sec. 1            |                           | Мос                                            | deled Structures                                          |                              |
| A CALL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 . E. Ma         | Mar La C                  | 6                                              |                                                           |                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | State - State     |                           | Flor                                           | w Direction                                               |                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | MAR A.                    |                                                |                                                           |                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12                | C. A.M.A.                 |                                                |                                                           |                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | The second        |                           |                                                |                                                           |                              |
| The second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A State           | Contraction of the second | NOTES                                          |                                                           |                              |
| En a What a Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                           | 1. AERIAL PHOTO WAS S                          | UPPLIED BY ESRI                                           |                              |
| and the share that the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Carl Carl         | AND THE STREET            | 2. THE INUNDATION ARE<br>AN EXTREMELY REMOTE   | AS SHOWN ON THIS MAP REFLE<br>E NATURE. THESE RESULTS ARE | CT EVENTS OF<br>E NOT IN ANY |
| Margaret and a state                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Care P            | 1                         | MIRROR LAKE DAM                                | LECT UPON THE INTEGRITY OF                                |                              |
| a deres and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |                           | 3. THE INUNDATION ARE<br>USED AS A GUIDELINE F | A SHOWN IS APPROXIMATE AND<br>OR ESTABLISHING EVACUATION  | SHOULD BE<br>ZONES.          |
| the last a state                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                           | 4. ACTUAL INUNDATION A                         | AREA WILL DEPEND ON ACTUAL<br>NFFER FROM THIS MAP.        | FAILURE                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Carl L            | A CALLER                  | 4. INUNDATION AREA WA                          | S CALCULATED BY SIMULATING                                | DAM FAILURE                  |
| - A M'S A BOARD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1. Sa .           | A CARLON AND              | 5. WET WEATHER DAM F                           | A COMPUTER SOFTWARE.                                      | MAXIMUM WATER                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and the           | a start and               | SURFACE ELEVATION RE<br>500-YEAR FLOOD (340 C  | ESULTING FROM 500-YEAR FLOO<br>FS PEAK FLOW) IN DOWNSTREA | DD AND<br>M RIVER            |
| A STATE OF THE STATE OF THE STATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1000              | E. S. S. Charles          | 6. ELEVATION DATUM IS                          | NAVD88.                                                   |                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10-3              | A share in                |                                                |                                                           |                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Call State        | And States                |                                                |                                                           |                              |
| and a second second second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | the state         | Contraction of the        |                                                |                                                           |                              |
| and the second sec                                                                                                                                                                                                                                             |                   | AND THE SECOND            |                                                |                                                           |                              |
| d Broach                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | and and           | Cart in St.               |                                                |                                                           |                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                           |                                                |                                                           |                              |
| .1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | The second second | A AND SA                  |                                                |                                                           |                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | and an interest           |                                                |                                                           |                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | A CONTRACT                |                                                |                                                           |                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | The at            | STATISTICS.               |                                                |                                                           |                              |
| a set a cant of a the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | by a set          | 1 april 1                 |                                                |                                                           |                              |
| ALL MARKED AND AND AND AND AND AND AND AND AND AN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 24 BU             | and the second            | INUI                                           |                                                           | P                            |
| ALL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |                           | MIRE                                           | OR LAKE DA                                                | AIVI                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | A MARCEN                  | STOR                                           | RS, CONNECTIC                                             | UT                           |
| and and and and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and the           |                           |                                                | •                                                         |                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                           |                                                | PAGE 1 OF 1                                               |                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and the second    | A Part of the             | Prepared For:                                  |                                                           |                              |
| and the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Part I            | 1 1 1 K                   | University of                                  | Connecticut (UCon                                         | n)                           |
| the strange of the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Contract of       | A MARKEN                  |                                                |                                                           |                              |
| A LAND A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 - Lat 1         |                           | Prepared By:                                   |                                                           |                              |
| and the second s | ACE.              |                           | GZA GeoEn                                      | vironmental, Inc.                                         |                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                           | 249 Vanderbilt Av                              | e<br>162                                                  | GL                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and the second    |                           | Phone: (781) 278-                              | 3700 Fax: (781) 278-5701                                  |                              |
| States &                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | a star            |                           | Proj. Mgr.: CHS<br>Designed By: CHS            | Dwg. Date: 3/30/2021                                      |                              |
| and the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A CAR             | Se states                 | Reviewed By: DML<br>Operator: DEM              | Job No.: 01.0019244.24                                    |                              |

| 30" CULVERT                          |              |                     |  |
|--------------------------------------|--------------|---------------------|--|
|                                      | 500-yr Flood | 500-yr Flood Breach |  |
| Maximum Water Surface Elevation (ft) | 576.8        | 578.3               |  |
| Top of Structure (ft)                | 575.5        | 575.5               |  |
| Overtopping Depth (ft)               | 1.3          | 2.8                 |  |
| Peak Discharge (cfs)                 | 180          | 385                 |  |

|    | GURLEYVILLE ROAD - CULVERT 1         |              |                       |  |  |
|----|--------------------------------------|--------------|-----------------------|--|--|
| E  |                                      | 500-yr Flood | 500-yr Flood Breach   |  |  |
|    | Maximum Water Surface Elevation (ft) | 529.3        | 530.8                 |  |  |
| 2  | Top of Structure (ft)                | 528.1        | 528.1                 |  |  |
| ŝ  | Overtopping Depth (ft)               | 1.2          | 2.7                   |  |  |
| 1  | Peak Discharge (cfs)                 | 200          | 560                   |  |  |
| ۲. |                                      | 1 10 A 10 10 | and the second second |  |  |

| WILLOWBROOK FOOT BRIDGE                  |              |                     |  |
|------------------------------------------|--------------|---------------------|--|
|                                          | 500-yr Flood | 500-yr Flood Breach |  |
| Maximum Water Surface Elevation (ft)     | 570.2        | 571.8               |  |
| Top of Structure (ft)                    | 569.0        | 569.0               |  |
| Overtopping Depth (ft)                   | 1.2          | 2.8                 |  |
| Peak Discharge (cfs)                     | 225          | 515                 |  |
| TATIS SEE TRANSFER SHERE AND AN ELEMENTS | 50000335-00  |                     |  |

| ROUTE 195                            |                                                                                                                 |                            |
|--------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------|
|                                      | 500-yr Flood                                                                                                    | 500-yr Flood Breach        |
| Maximum Water Surface Elevation (ft) | 576.5                                                                                                           | 577.9                      |
| op of Structure (ft)                 | 576.0                                                                                                           | 576.0                      |
| Overtopping Depth (ft)               | 0.5                                                                                                             | 2.0                        |
| Peak Discharge (cfs)                 | 325                                                                                                             | 735                        |
|                                      | A CONTRACTOR OF | Carlo Carlos Carlos Carlos |

| 100 |                                      | 20 T 12 1    |                     | 114 |
|-----|--------------------------------------|--------------|---------------------|-----|
| 14  | MIRROR LAKE DAM                      |              |                     |     |
| 20  |                                      | 500-yr Flood | 500-yr Flood Breach |     |
| ~   | Maximum Water Surface Elevation (ft) | 588.9        | 588.9               |     |
| 1   | Peak Discharge (cfs)                 | 340          | 825                 | E.  |
| 14  |                                      |              | C H H H C           | 1.1 |

A



GZA GeoEnvironmental, Inc.